

MInternational UON Collider Collaboration

MuCol

Muon Collider

D. Schulte

On behalf of the International Muon Collider Collaboration

Funded by the European Union (EU). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the EU or European Research Executive Agency (REA). Neither the EU nor the REA can be held responsible for them.

Tokyo, July, 2024

Muon Collider Overview

MInternational UON Collider Collaboration

Would be easy if the muons did not decay Lifetime is $\tau = \gamma \times 2.2 \ \mu s$

Short, intense proton bunch			Ionisation cooling of muon in matter		Acceleration energy	Collision	
Protons produce pion decay into muons muons are captured		s which					
							and the second s

Muon Collider Promises

US Snowmass Implementation Task Force: Th. Roser, R. Brinkmann, S. Cousineau, D. Denisov, S. Gessner, S. Gourlay, Ph. Lebrun, M. Narain, K. Oide, T. Raubenheimer, J. Seeman, V. Shiltsev, J. Straight, M. Turner, L. Wang et al.

	CME [TeV]	Lumi per IP [10 ³⁴ cm ⁻² s ⁻¹]	Cost range [B\$]	Power [MW]
FCC-ee	0.24	8.5	12-18	290
ILC	0.25	2.7	7-12	140
CLIC	0.38	2.3	7-12	110
CLIC	3	5.9	18-30	550
МС	3	1.8	7-12	230
МС	10	20	12-18	300
FCC-hh	100	30	30-50	560

Judgement by ITF, take it *cum grano salis*

D. Schulte, Muon Collider, LCWS, Tokyo, July 2024

Muon Collider Community

Formed **collaboration** hosted by CERN to implement R&D Roadmap for CERN Council

MuCol

60+ partners, 50+ already signed MoC

EU Design Study

(EU+Switzerland+UK and partners)

US P5 has strong support "Our Muon Shot"

Informal discussion with DoE (Regina Rameika, A. Patwa):

- DoE wants to maintain IMCC as a **global** collaboration
- Addendum to CERN-DoE-NSF agreement is
 in preparation

D. Schulte, Muon Collider, LCWS, Tokyo, July 2024

Develop the muon collider as option for Europe, the US and any other interested region

Continue to grow the collaboration and secure resources

Mucol

MoC and MuCol Partners

Iowa State University
University of Iowa
Wisconsin-Madison
Pittsburg University
Old Dominion
Chicago University
Florida State University
RICE University
Tennessee University
MIT Plasma science center
Pittsbergh PAC
СНЕР
FNAL
LBL
JLAB

ivi u C		IT
IEIO	CERN	
FR	CEA-IRFU	
	CNRS-LNCMI	
DE	DESY	
	Technical University of Darmstadt	
	University of Rostock	
	КІТ	
UK	RAL	
	UK Research and Innovation	
	University of Lancaster	
	University of Southampton	
	University of Strathclyde	
	University of Sussex	
	Imperial College London	
	Royal Holloway	
	University of Huddersfield	
	University of Oxford	
	University of Warwick	Mal
	University of Durham	EST

INFN
INFN, Univ., Polit. Torino
INFN, Univ. Milano
INFN, Univ. Padova
INFN, Univ. Pavia
INFN, Univ. Bologna
INFN Trieste
INFN, Univ. Bari
INFN, Univ. Roma 1
ENEA
INFN Frascati
INFN, Univ. Ferrara
INFN, Univ. Roma 3
INFN Legnaro
INFN, Univ. Milano Bicocca
INFN Genova
INFN Laboratori del Sud
INFN Napoli
Univ. of Malta
Tartu University

SE	ESS
	University of Uppsala
РТ	LIP
NL	University of Twente
FI	Tampere University
LAT	Riga Technical University
СН	PSI
	University of Geneva
	EPFL
BE	Univ. Louvain
AU	НЕРНҮ
	TU Wien
ES	13M
	CIEMAT
	ICMAB
China	Sun Yat-sen University
	IHEP
	Peking University
КО	KEU
	Yonsei University

Goals and Progress

\sqrt{s}	$\int \mathcal{L} dt$
3 TeV	$1 {\rm ~ab^{-1}}$
$10 { m TeV}$	$10 {\rm ~ab^{-1}}$
$14 { m TeV}$	$20 {\rm ~ab^{-1}}$

Target integrated luminosities are based on physics Increase as E_{cm}^2

Goal is to develop a	a staged high-energy	muon collider concept
----------------------	----------------------	-----------------------

- Focus on 10 TeV
- First stage by 2050

Changes with respect to past studies:

- Focus on highest energy
- Technology and design advances in past years

Label	Begin	End	Description	Aspir	Aspirational		Minimal	
				[FTEy]	[kCHF]	[FTEy]	[kCHF]	
MC.SITE	2021	2025	Site and layout	15.5	300	13.5	300	
MC.NF	2022	2026	Neutrino flux miti- gation system	22.5	250	0	0	
MC.MDI	2021	2025	Machine-detector interface	15	0	15	0	
MC.ACC.CR	2022	2025	Collider ring	10	0	10	0	
MC.ACC.HE	2022	2025	High-energy com- plex	11	0	7.5	0	
MC.ACC.MC	2021	2025	Muon cooling sys- tems	47	0	22	0	
MC.ACC.P	2022	2026	Proton complex	26	0	3.5	0	
MC.ACC.COLL	2022	2025	Collective effects across complex	18.2	0	18.2	0	
MC.ACC.ALT	2022	2025	High-energy alter-	11.7	0	0	0	
			natives					
MC.HFM.HE	2022	2025	High-field magnets	6.5	0	6.5	0	
MC.HFM.SOL	2022	2026	High-field solenoids	76	2700	29	0	
MC.FR	2021	2026	Fast-ramping mag- net system	27.5	1020	22.5	520	
MC.RF.HE	2021	2026	High Energy com- plex RF	10.6	0	7.6	0	
MC.RF.MC	2022	2026	Muon cooling RF	13.6	0	7	0	
MC.RF.TS	2024	2026	RF test stand + test cavities	10	3300	0	0	
MC.MOD	2022	2026	Muon cooling test module	17.7	400	4.9	100	
MC.DEM	2022	2026	Cooling demon- strator design	34.1	1250	3.8	250	
MC.TAR	2022	2026	Target system	60	1405	9	25	
MC.INT	2022	2026	Coordination and integration	13	1250	13	1250	
			Sum	445.9	11875	193	2445	

Table 5.5: The resource requirements for the two scenarios. The personnel estimate is given in full-time equivalent years and the material in KCHF. It should be noted that the personnel contains a significant number of PhD students. Material budgets do not include budget for travel, personal IT equipment and similar costs. Colours are included for comparison with the resource profile Fig. 5.7. **Reviews** in Europe and US found **no unsurmountable obstacle**

But less mature than other concepts (linear collider)

Global community developed Accelerator R&D Roadmap

Good progress in implementing Roadmap

• But still budget limited

Important technical progress But cannot cover it here

MDI and beam-induced background

Two detector concepts are being developed MuCol

> MUSIC (MUon Smasher for Interesting Collisions)

A "New Detector Concept", maybe a flashier name can be found

MuCol

Activities in SY/STI:

- Detailed simulation of detector background and radiation damage by means of FLUKA
- Optimization of MDI (nozzle, shielding) and IR for 10 TeV collider ongoing,
- First engineering considerations for nozzle

Integral approach for MDI design:

in the IR (derive specs for halo cleaning

Refinement of incoherent pair product

D. Schulte, Muon Collider, LCWS, Tokvo, July 2024

irst estimates of the cumulative radiation de

First study of the pozzle optimization potential irst study of forward muons (10 TeV)

in the detector (3 TeV and 10 TeV)

MInternationa UON Collide Backaround spectralaboration

rechnic

Per year of operation (140d)	Ionizing dose	Si 1 MeV neutron-equiv. fluence
Vertex detector	200 kGy	3×10 ¹⁴ n/cm ²
Inner tracker	10 kGy	1×10 ¹⁵ n/cm ²
ECAL	2 kGy	1×10 ¹⁴ n/cm ²

-200 -100

0 100 200

z [cm]

0

Radiation damage in detector (10 TeV)

 10^{4}

 10^{3}

10

 10^{0}

Total ionizing dose 1 MeV neutron equivalent in Silicon [n cm⁻² v⁻¹] 10^{6}

D. Schulte, Muon Collider, Birmingham, July 2024

IMCC plans for final ESPPU report:

Redo radiation damage calculations with optimized 10 TeV nozzle and lattice (and new detector design)

For IMCC lattice version v0.4

Calculate contribution of other source terms (e.g. incoherent pairs, halo loss

D. Schulte, Muon Collider, LCWS, Tokyo, July 2024

10

D. Schulte, Muon Collider, LCWS, Tokyo, July 2024

D. Scharce, Maon

Fast-ramping Magnet System

Differerent power converter options investigated

Commutated resonance (novel)

Beampipe study Eddy currents vs impedance Maybe ceramic chamber with stripes

F. Boattini et al.

D. Schulte, Muon Collider, INFN, May 2024

5.07 kJ/m

Efficient energy recovery for resistive dipoles (O(100MJ))

Synchronisation of magnets and RF for power and cost

•

5.65...7.14 kJ/m

5.89 kJ/m

3 TeV:

MuCol High performance 10 TeV challenges:

- Very small beta-function (1.5 mm) Large energy spread (0.1%)
- Maintain short bunches

10 TeV collider ring in progress:

- around 16 T HTS dipoles or lower Nb₃Sn
- final focus based on HTS
- Need to further improve the energy acceptance by small factor

Different cooling scenarios studied 150 < 25 MW power for cooling possible Shield with CO₂ at 250 K (preferred) or water K. Skoufaris, Ch. Carli, D. Amorim, A. Support of shield is important for heat transfer Lechner, R. Van Weelderen, P. De Sousa. Discussion on options for magnet cooling

50

L. Bottura, D. Calzolari et al

Shielding

100

X [mm]

HTS at 20 K and 10-14 cm aperture Can reach 16-14 T, cost limited Factor 3 cost reduction assumed Can reach 16 T and 16 cm with more material or lower temperature Maturity takes likely >15 years But maybe OK in 15 years at lower performance, similar to Nb3Sn

UON Collider

RF shield

Dipole Cost

MuCo Key cost drivers are based on sound models

E.g. RCS with trade-off between RF and magnet cost

A part of the cost will be based on scaling from other projects

A part of the cost depends on future developments of technology bevond our study

E.g. cost of superconductor

Major cost optimisations remain to be done in the design

CDR Phase, R&D and Demonstrator Facility

D. Schulte, Muon Collider, INFN, May 2024

MuCol

Broad R&D programme can be distributed world-wide

- Models and prototypes Magnets, Target, RF systems, Absorbers, ...
- **CDR** development
- Integrated tests, also with beam

Cooling demonstrator is a key facility

 look for an existing proton beam with significant power

Different sites are being considered

- CERN, FNAL, ESS ...
- Two site options at CERN

Muon cooling module test is important

- INFN is driving the work
- Could test it at CERN with proton beam

Assume: Need prototype of magnets by decision process

Consensus of experts (review panel):

- Anticipate technology to be mature in O(15 years):
 - · HTS solenoids in muon production target, 6D cooling and final cooling
 - HTS tape can be applied more easily in solenoids
 - Strong synergy with society, e.g. fusion reactors
 - Nb₃Sn 11 T magnets for collider ring (or HTS if available): 150mm aperture, 4K
- This corresponds to 3 TeV design
- Could build 10 TeV with reduced luminosity performance
 - · Can recover some but not all luminosity later

Still under discussion:

MUCO

- Timescale for 10 TeV HTS/hybrid collider ring magnets
- · For second stage can use HTS or hybrid collider ring magnets

Magnet Roadmap

Strategy:

- HTS solenoids
- Nb₃Sn accelerator magnets HTS accelerator magnets
- Seems technically good for any future project

704 MHz cavity for the Muon Cooling (MC) Demonstrator

RF design and coupler RF-thermo-mechanical simulations

- RF simulations in CST Studio Suite®
 - Calculation of the pulse shape
 - Computation of the rain RF figure of merits
 - Optimization of the cavity shape
- RF-thermo-mechanical simulations in COMSOL Multiphysics®
 - Thermally-induced stress-strain state and frequency detuning
 - Mechanical stress and deformations and Lorentz Force Detuning (LFD) analysis

D. Schulte, Muon Collider, April 2024

Minternational UON Collider Collaboration

D. Schulte, Muon Collider, LCWS, Tokyo, July 2024

SC HTS coils

M. Calviani, R. Losito. Oshorn et al

With crvostat

forces

Two stage cryocooler

Thermal shield

Some Progress Examples

Systematic approach to magnet performance expectations Target magnet similar to fusion reactor magnets Engineering design of muon cooling cells started

Overall optimisation not yet done and probably needs time to fully conclude

Timeline and Staging

Exploring timeline with first stage operational by 2050, main technical drivers:

- Muon cooling technology
- Magnets
- Detector

Luminosity staging

- Start at with full energy, but lower luminosity
- Main luminosity loss sources are arcs and interaction region ٠
 - Can later upgrade interaction region (as in HL-LHC)

D. Schulte, Muon Collider, LCWS, Tokyo, July 2024

Could be much smaller with improved HTS ramping magnet

Site Studies

Candidate sites CERN, FNAL, potentially others (ESS, JPARC, ...)

Exploration at FNAL started Collider and accelerator complex could fit on site Demonstrator as well

Exploration at CERN started Re-using LHC and SPS tunnels, new collider ring Collider and accelerator complex could fit on CERN land More detailed studies required

R&D Programme

Broad R&D programme can be distributed world-wide

Muon cooling technology

- RF test stand to test cavities in magnetic field
- Muon cooling cell test infrastructure
- Demonstrator

MuCol

- At CERN, FNAL, ESS, JPARC, ...
- Workshop in October at FNAL

Magnet technology

- HTS solenoids
- Collider ring magnets with Nb3Sn or HTS

Detector technology and design

- Can do the important physics with near-term technology
- But available time will allow to improve further and exploit AI, MI and new technologies

Many other technologies are equally important now to support that the muon collider can be done and perform

Training of young people

Strong synergy with HFM Roadmap and RF efforts

Conclusion

R&D progress is increasing confidence that the collider is a unique, sustainable path to the future P5 strongly supports this view

• Plan to increase collaboration with the US

Started exploring the implementation at CERN and FNAL using existing infrastructure

Cost scale estimate has started

We expect that a first collider stage can be operational by 2050

- If the resources ramp up sufficiently
- If decision-making processes are efficient

Need to continue ramping up the momentum

Many thanks to the collaboration for all the work

To join contact muon.collider.secretariat@cern.ch

Reserve

and a second second

19

IMCC Plans

For the **ESPPU**, will deliver

- Evaluation report, including tentative cost and power consumption scale estimate
- R&D plan, including some scenarios and timelines
- Requires to push as hard as possible with existing resources

After ESPPU submission:

- Will fulfill EU contract
 - Final deliverable is report on all R&D
- Will have some US process after the ESPPU
 - Likely requires Reference Design
- LDG wants to maintain momentum
 - EU Roadmap continues

Continue together to develop green field concept

- Avoid becoming site specific before funding agencies put the resources on the table
- Develop site specific versions as derived approaches

Note: IMCC will prepare all reports together as a global community

Technology Maturity

Important timeline drivers:

- Magnets
 - HTS technology available for solenoids (expect mature for production in 15 years)
 - Nb₃Sn available for collider ring, maybe lower performance HTS (expect in 15 years)
 - High performance HTS available for collider ring (may take more than 15 years)
- **Muon cooling technology and demonstrator** (expect demonstrator operational in <10 years, with enough resources, allows to perform final optimization of cooling technology)
- Detector technologies and design (expect in 15 years)

Other technologies are also instrumental for performance, cost, power consumption and risk mitigation

• but believe that sufficient funding can accelerate their development sufficiently

Other important considerations for the timeline are

- Civil engineering
- Decision making
- Administrative procedures

Power and Environment

The compact footprint, limited cost and power consumption are intrinsic features that motivate the muon collider study in the first place. Reuse of existing infrastructure is further reducing the impact on the environnement.

Specific studies address the key power consumers:

• Superconducting magnets, fast-ramping magnets, normal- and superconducting RF systems, cooling of the components and their shielding

Can give some numbers on CO₂, where common database is available

Neutrino flux mitigation is being studied

Tentative Staged Target Parameters

Target integrated luminosities

\sqrt{s}	$\int \mathcal{L} dt$
3 TeV	$1 {\rm ~ab^{-1}}$
$10 { m TeV}$	$10 {\rm ~ab^{-1}}$
$14 { m TeV}$	$20 {\rm ~ab^{-1}}$

Need to spell out scenarios

Need to integrate potential performance limitations for technical risk, cost, power, ...

Parameter	Unit	3 TeV	10 TeV	10 TeV	10 TeV	llat
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	tbd	13	
Ν	10 ¹²	2.2	1.8	1.8	1.8	
f _r	Hz	5	5	5	5	
P _{beam}	MW	5.3	14.4	14.4	14.4	
С	km	4.5	10	15	15	
	Т	7	10.5	SZ	7	
ε	MeV m	7.5	7.52	7.5	7.5	
σ _E / E	%	0.1	0.1	tbd	0.1	
σ _z	mm	5	1.5	tbd	1.5	
β	mm	5	1.5	tbd	1.5	
3	μm	25	25	25	25	S
σ _{x,y}	μm	3.0	0.9	1.3	0.9	

IMCC Organisation

Collaboration Board (ICB)

- Elected chair: Nadia Pastrone
- 50 full members, 60+ total

Steering Board (ISB)

- Chair Steinar Stapnes
- CERN members: Mike Lamont, Gianluigi Arduini
- ICB members: Dave Newbold (STFC), Mats Lindroos (ESS), Pierre Vedrine (CEA), N. Pastrone (INFN), Beate Heinemann (DESY)
- Study members: SL and deputies

Advisory Committee

Coordination committee (CC)

- Study Leader: Daniel Schulte
- Deputies: Andrea Wulzer, Donatella Lucchesi, Chris Rogers

Will integrated the US also in the leadership

CDR Phase, R&D and Demonstrator Facility

MuCol

Broad R&D programme can be distributed world-wide

- Models and prototypes
 - Magnets, Target, RF systems, Absorbers, ...
- CDR development
- Integrated tests, also with beam

Cooling demonstrator is a key facility

 look for an existing proton beam with significant power

Two stage cryocooler With cryostat Thermal shield Coil support structure ulsion Tie rods for r n forces and compress SC HTS coils

M. Calviani, R. Losito, J. Osborn et al.

Different sites are being considered

- CERN, FNAL, ESS ...
- Two site options at CERN

Muon cooling module test is important

- INFN is driving the work
- Could test it at CERN with proton beam

US P5: The Muon Shot

Particle Physics Project Prioritisation Panel (P5) supports US ambition to host a 10 TeV parton-parton collider

Endorses muon collider R&D: "This is our muon shot"

Recommend joining the IMCC Consider FNAL as a host candidate US is already particpating to the collaboration

US ambition:

- Want to reach a 10 TeV parton level collisions
- Timeline around 2050
- Fermilab option for demonstator and hosting
- Reference design in a "few" years

Informal discussion with DoE (Regina Rameika, A. Patwa):

- DoE wants to maintain IMCC as a global collaboration
- Addendum to CERN-DoE-NSF agreement should be in preparation

IMCC prepares options for Europe and for the US in parallel

