# Detector R&D for Higgs Factories

S. Rajagopalan (BNL)

LCWS, Tokyo 2024

8 July 2024

# Which Higgs Factory?

### HL-LHC is a Higgs Factory

- 3 ab<sup>-1</sup> planned,
- 170M Higgs bosons produced
- 120k HH pairs

- O(2-4%) precision on couplings to W, Z, 3<sup>rd</sup> gen. fermions
- $\mathcal{O}(50\%)$  precision on self-Higgs couplings
- Couplings to *u*, *d*, *s* and *e* not accessible.
- HL-LHC will significantly improve our understanding of the SM
  - Significant room for improvements!

#### $H \rightarrow \gamma \gamma + 2$ -jets with 200 pile up events in CMS



In any case, detector upgrades are in advanced stages (see G. Brooijman's talk)

There is no R&D remaining

#### Focus on:

- Upgraded silicon tracker
- Timing detector
- Improved Readout
  - Cope with higher pile-up/Luminosity

### e+e- Higgs Factory options



#### Circular

FCC-ee: Ongoing feasibility studies, Approval ~2028
 CEPC: TDR complete, Waiting for approval
 Linear
 ILC: Mature design based on SRF

C3: Cu cavity (LN2 temp) in R&D phase

CLIC: High gradient beam drive RF for higher energy





# Circular vs Linear

- 10<sup>9</sup> (@ILC) 10<sup>12</sup> (@FCC) Zs
   o Ref: LEP 10<sup>7</sup> Zs
- 10<sup>6</sup> (@ILC) to 10<sup>8</sup> (@FCC) *WW*
- > 10<sup>6</sup> Higgs at **ZH**
- 10<sup>6</sup> t t
   t
   *t* pairs
- > Multiple detectors at Circular colliders
- Beam Polarization at Linear colliders:
  - ➢ e<sup>-</sup> 80%, e<sup>+</sup> 30% at ILC.

Circular colliders: Extremely high luminosities at lower energies: Z and WW factories



# Challenges: FCC-ee wrt ILC

### Beam Structure:

- Continuous beam with bunch spacing 20 ns (Z pole) has implications on power management/cooling, rates, readout.
- ILC bunch structure allows for mitigation via power pulsing.

#### Machine Detector Interfaces



- Larger beam crossing angle 30 mrad crossing angle sets constraints on the solenoid field to 2 T

   Implies larger tracker volume, ILC tracker can be much more compact with higher fields.
- Nearest focusing quadrupole is closer 2.2 m from IP
- Backgrounds from incoherent pair production (IPC) and synchrotron radiation (SR)

#### High Luminosities

- Extremely high luminosities L ~ 1.8 x 10<sup>36</sup>/cm<sup>2</sup>s at Z-pole, physics interaction rate ~100 KHz
- Implications on detector response time, event size, FE electronics and timing
- Online and Offline data handling of high data rates/volumes O(10<sup>13</sup>) events.
- Require absolute luminosity measurements to 10<sup>-4</sup> to achieve desired physics sensitivity
- High statistical precision: Requires control of systematics down to 10<sup>-6</sup> 10<sup>-5</sup> level.

# The Physics is rich

Higgs Factories provide rich physics beyond in-depth study of Higgs boson

- Measure a comprehensive set of electroweak and Higgs observables with high precision
  - $\odot\,$  Tera-Z operation offers a unique opportunity
- Tightly constrain a large number of SM parameters
- Unveil, if any, small but significant deviations from SM predictions
- Evidence for rare processes and feebly coupled particles beyond the SM.



## **Detector Requirements**

### Many similar detector requirements between ILC, CLIC, FCC-ee, CEPC.

- Ultra-lightweight tracker to minimize multiple scattering.
- Low power consumption.
- Precision momentum resolution:

$$\circ \sigma(1/P_T) = a \oplus \frac{b}{P_T sin\theta} < 3 \times 10^{-5} \text{ GeV}^{-1}$$

- Excellent EM resolution with low constant term (<  $10\%/\sqrt{E}$ )
- Unprecedented low jet energy resolution to distinguish W/Z/H to dijets (<  $30\%/\sqrt{E}$ )
- Micron-precision b- and c- tagging capability  $\circ$  Impact parameter:  $\sigma_{r\phi} = 5 \pm 10/(p[GeV]sin^{\frac{3}{2}}\theta) \mu m$
- Particle ID in a broad momentum range, incl. pico-second timing capability allows for quark flavor physics at Z pole



### Several Detector Benchmarks for ILC/FCC-ee







# **Detector Benchmarks**

### All detector benchmarks emphasize one central paradigm: **PARTICLE FLOW**

- "Combines measurements from different detectors to reconstruct a holistic particle-based description of the entire event"
- Significant improvement in PFAs in recent years.
  - Using full covariance matrix taking into account correlations between measurement and uncertainties for each PF object.
  - Deriving neutrino corrections at individual semi leptonic decay level.
- Scalable machine learning algorithms, using GNN, have shown the promise to significantly improve jet energy resolution by 50%.
- ♦ Timing requirements offer another dimension for PFA algorithms → 5D calorimetry.
- \* Strange tagging (H $\rightarrow$  ss) require excellent vertexing to and veto b and c jets.
- ↔ Particle ID via TOFs, dE/dx, dN/dx to distinguish  $\pi$ , K decays.
- Advances in reconstruction algorithms and detector technology, incl. potential use of AI in both hardware and offline algorithms, warrant further scrutiny of detector benchmarks. Further R&D for optimal high granularity, low material, low noise detectors a must! 8 July 2024



### Silicon: Vertexing and Outer Tracker (SiD, CLD)

#### Monolithic active pixel sensors (MAPS) offer significant advantage

- Position resolution < 5μm and < 0.1% X/X0 per layer.</li>
- Thinned (50 μm), Stitched, Curved sensors
- Low power: 20 (50) mW/cm<sup>2</sup> for vertex (outer).
- Cooling by airflow a must. Sufficient?
- Material, Material, Material!

### System integration issues remain a challenge

- Mechanical support, services, readout
- Is reinforced carbon fiber still the optimal support structure?
- Hermeticity, Alignment, ....

### ✤O(ns) time resolution for beam background suppression

Dedicated ongoing effort (NAPA p-2 chip; <1 ns, < 20 mW/cm<sup>2</sup>)

### Synergy with ALICE ITS3 and EIC EPIC tracker:

- Requirements are very similar.
- EPIC/ITS3 becomes an essential prototype demonstrator for future collider detectors!





# Gaseous Tracker (ILD, IDEA, ALLEGRO)

### High-precision low-mass drift chamber for outer tracker

- Reduced material  $\rightarrow$  minimal multiple interaction  $\rightarrow$  better momentum resolution
- Particle separation through dE/dx or dN/dx, Continuous tracking.
- TPC (ILD): Distortions due to primary ion build up a challenge at FCC-ee
  - Significantly larger at FCC-ee: 2 x 10<sup>12</sup> primary ions at any time (> x2500 ILD)
- Large scale mechanical structures and full-size prototypes needed to demonstrate the feasibility of gaseous tracking



Comparing CLD and IDEA: CLD

- All Si Tracker
- total material budget 11%

**IDEA** 

- Drift Chamber
- Material budget is < 2%



## Particle ID

- Particle ID using time of flight, dE/dx, cluster counting is important for flavor physics studies. (see FCC-ee analysis, CEPC analysis)
- dE/dx in drift chamber can provide >3 $\sigma \pi/K$  separation up to ~30 GeV.
  - Non-differentiable for p~1 GeV. Mitigated with dedicated TOF systems surrounding tracking volume
- LGAD based timing layer can provide high precision (~10 ps) timing resolution.
  - For a 2m path length (outer radius),  $\sigma_t \sim 10$  ps can achieve a  $3\sigma \pi/K$  separation for p < 5 GeV/c.
- Pressurized RICH detectors being investigated, can potentially offer  $3\sigma \pi/K$  separation 5-80 GeV.



# Calorimeter

- All proposed detector benchmarks focus on high granularity sampling calorimeter with low noise intended to aid Particle Flow
- Si/W: Calice Like (SiD, ILD, CLIC, CLD)
  - ECAL: W/Si or W/scint+SiPM
  - HCAL: steel/scint+SiPM
- Liquid Argon ECAL + Tile HCAL (ATLAS like)
  - Finer longitudinal (12 vs. 4 in ATLAS) segmentation, superior (~5x) SNR with cold electronics.
  - Turbine structures proposed for forward EM calorimeter
- Dual Readout Fiber calorimeter with EM Crystal
  - Cu absorbers with embedded Scintillation and Cerenkov fibers
  - Additional longitudinal segmentation via timing needs further exploration
  - EM Crystal calorimeter can potentially offer good resolution ( $\sim 3\%/\sqrt{E}$ )
- Very forward (Si-W) cal. to measure Luminosity via Bhabha's.

Reference: M. Aleksa et. al.

# **Calorimeter Performance**

Jet Energy Resolution:  $\delta E/E < 30\% / VE$  [GeV]

#### Mass reconstruction from jet pairs

Resolution important to control (combinatorial) backgrounds in multi-jet final states.

- $HZ \rightarrow 4$  jets, tt events, etc. •
- At  $\delta E/E \simeq 30\%$  / VE [GeV], detector resolution is comparable to natural widths of W and Z bosons

EM Energy Resolution:  $\delta E/E < 10\% / VE$  [GeV]

- **Invariant masses**
- $H \rightarrow \gamma \gamma$ ٠
- $\pi^0$  identification and measurement for  $\tau$  polarisation, etc. •
- Also important for searches of the kind  $\tau \rightarrow \mu \gamma$ •

### Need to demonstrate performance with realistic prototype modules in test beams



# Unified R&D approach

### A Higgs Factory Coordination Consortium has been formed in the U.S. to

- provide strategic direction for the U.S. community to engage, shape, and thereby advance the development of the physics, experiment, and detector (PED) program for a potential future Higgs factory; and to ensure cooperation with our partners in the international program.
- The Linear and Circular collider communities in the U.S. have united to plan and pursue detector R&D toward a future Higgs Factory within this organization.
- This is critical given the limited available resources and funding.

### Such collaborations are essential on a global scale:

• We can benefit by pooling resources in Europe, Japan, the U.S. and elsewhere to pursue detector R&D in a complementary and cost-effective manner toward a future Higgs Factory.

### DRD collaborations created at CERN offer a channel to facilitate such a collaboration. (see D. Contardo)

But still not sufficiently reflective of a global R&D effort.



#### **Current DRD Demographics**

# Summary

Detector benchmarks for ILC (ILD and SiD) well advanced relative to FCC-ee benchmarks.

- Large synergy between detector requirements for ILC and FCC.
- Significant advances in technologies and adaptation of ML based algorithms require reconsideration of detector concepts
  - Further R&D required, in particular to demonstrate performance via realistic scale prototypes.
  - Significant synergies in MAPS based detectors between ILC/FCC and EIC/ALICE ITS3
- Newly organized Detector R&D (DRD) collaborations at CERN offer a vehicle for collaboration and efforts.
  - Resources to pursue such R&D efforts remain minimal, largely due to other ongoing efforts in HL-LHC upgrades.
  - Priority must be to complete construction, operate, and get to the physics on what we commit to build : Failure to do so will have a significant negative impact on our efforts to realize a future Higgs Factory.
- Number of talks in parallel sessions this week: An opportunity to further explore and deliberate the ongoing R&D efforts.

### **Beam Parameters**

| Linear                                                               | ILC        | 2          | CLIC       |            |          |  |
|----------------------------------------------------------------------|------------|------------|------------|------------|----------|--|
| Parameter                                                            | 250<br>GeV | 500<br>GeV | 380<br>GeV | 1.5<br>TeV | 3<br>TeV |  |
| Luminosity L (10 <sup>34</sup> cm <sup>-2</sup> sec <sup>-1</sup> )  | 1.35       | 1.8        | 1.5        | 3.7        | 5.9      |  |
| L > 99% of Vs (10 <sup>34</sup> cm <sup>-2</sup> sec <sup>-1</sup> ) | 1.0        | 1.0        | 0.9        | 1.4        | 2.0      |  |
| Number of bunches per train                                          | 1312       | 1312       | 352        | 312        | 312      |  |
| Bunch separation (ns)                                                | 554        | 554        | 0.5        | 0.5        | 0.5      |  |
| Beam size at IP $\sigma_x/\sigma_y$ (nm)                             | 515/7.7    | 474/5.9    | 150/2.9    | ~60/1.5    | ~40/1    |  |

| Circular                                                             | FCC-ee |       |       | CEPC   |         |
|----------------------------------------------------------------------|--------|-------|-------|--------|---------|
|                                                                      | [      |       |       |        | μ       |
|                                                                      | Z      | Higgs | ttbar | Z (2T) | Higgs   |
| √S [GeV]                                                             | 91.2   | 240   | 365   | 91.2   | 240     |
| Luminosity / IP (10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> ) | 140    | >5    | 1.25  | 32     | 1.5     |
| no. of bunches / beam                                                | 11200  | 440   | 60    | 12000  | 242     |
| Bunch separation (ns)                                                | 20     | 994   | 3000  | 25     | 680     |
| Beam size at IP σ <sub>x</sub> /σ <sub>y</sub> (μm/nm)               | 6.4/28 | 14/36 | 38/68 | 6.0/40 | 20.9/60 |