Challenges for MC generators (for e^+e^- colliders)

 (\mathbf{D})

Opus

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Monte Carlo Challenges

J. R. Reuter, DESY

Monte Carlo Challenges

J. R. Reuter, DESY

Why are MC generators important?

"Forward simulation": Monte Carlo generators

J. R. Reuter, DESY

Why are MC event generators non-trivial?

Vast Linear Collider Facility Physics program to be simulated

J. R. Reuter, DESY

J. R. Reuter, DESY

Ş Micro-scale bunches create beamstrahlung Ş Has to be folded into realistic MC simulations

- Gaussian shape with specific spreads 1.
- Parameterized (delta peak \oplus power law) 2.
- Generator for 2D histogrammed fit 3.

Ş Micro-scale bunches create beamstrahlung Ş Has to be folded into realistic MC simulations

- Gaussian shape with specific spreads
- Parameterized (delta peak \oplus power law) 2.
- Generator for 2D histogrammed fit 3.

Increasing sophistication

Dalena/Esbjerg/Schulte [LCWS 2011]

Ş Micro-scale bunches create beamstrahlung Ş Has to be folded into realistic MC simulations

- Gaussian shape with specific spreads
- Parameterized (delta peak \oplus power law) 2.
- Generator for 2D histogrammed fit 3.

Increasing sophistication

Decreasing availability

Dalena/Esbjerg/Schulte [LCWS 2011]

Ş Micro-scale bunches create beamstrahlung Has to be folded into realistic MC simulations

- Gaussian shape with specific spreads
- Parameterized (delta peak \oplus power law) 2.
- Generator for 2D histogrammed fit 3.

Increasing sophistication

Decreasing availability

Multi-Dim fits only viable option for photon colliders/CLIC/PWFA! (ERL?) Ģ Parameterized spectra still be useful: fast evaluation, unfolding Ų 3D-structure of beam spectra (z-dependence)

J. R. Reuter, DESY

SM precision: fixed-order, resummed, hadronized

J. R. Reuter, DESY

Three major bottlenecks to go to NNLO

- Virtual integrals with many mass scales / off-shell legs
- Process-independent (generic) automated NNLO subtraction
- Negative weights in NLO simulations deteriorate at NNLO

J. R. Reuter, DESY

The "Exclusive" Frontier — fN(N)LO, Automation in MCs

Signal & bkgd. samples at full SM QFT interference level @ NLO QCD \oplus EW

Pia Bredt, Phd thesis, DESY, 2022, arXiv:2212.04393

NLO QCD

WHIZARD+RECOLA			
$\sigma_{\rm LO}^{\rm tot} [{\rm fb}]$	$\sigma_{ m NLO}^{ m tot}$ [fb]	$\delta_{ m EW}~[\%]$	$\sigma^{ m sig}~(m LO/NLO)$
25.60(1)	207.0(1)	-8.25	0.4/2.1
53.74(3)	62.41(2)	+16.14	0.2/0.3
0549(6)	14.57(1)	+20.84	0.5/0.5

	$\sigma_{ m LO}[{ m fb}]$	$\sigma_{ ext{NLO}}[ext{fb}]$
$e^+e^- \rightarrow jj$	622.737(8)	639.39(5
$e^+e^- ightarrow jjj$	340.6(5)	317.8(5)
$e^+e^- ightarrow jjjjj$	105.0(3)	104.2(4)
$e^+e^- ightarrow jjjjjj$	22.33(5)	24.57(7)
$e^+e^- ightarrow jjjjjjj$	3.583(17)	4.46(4)
$e^+e^- ightarrow tar{t}$	166.37(12)	174.55(20
$e^+e^- \rightarrow t\bar{t}j$	48.12(5)	53.41(7)
$e^+e^- \rightarrow t\bar{t}jj$	8.592(19)	10.526(21
$e^+e^- \rightarrow t\bar{t}jjj$	1.035(4)	1.405(5)

J. R. Reuter, DESY

QED PDFs — QED Inclusive Photons

Collinear logarithms

$$L = \log \frac{Q^2}{m^2}$$

QED PDFs — QED Inclusive Photons

- \Box Collinear factorization: universal QED ePDFs, LL: $(\alpha L)^k$, NLL: $\alpha(\alpha L)^{k-1}$
- NLO EW: fixed order with massive electrons vs. massless with NLL ePDFs
- ¹ 2nd option: most precise normalization of total cross section [2-4 per mille]
- Numerical stability intricate: integrable singularity for $z \rightarrow 1$
- Implementations available in MG5 and Whizard

ePDFs for polarized leptons !?

J. R. Reuter, DESY

NLL, $\mu_0 = m_e$, $\mu = 100 \text{ GeV}$

Exclusive Photon Simulation

- Exclusive photon distribution important for detector optimization / mono-photon searches etc.
- Different algorithms: QED shower, soft/eikonal resummation (YFS), recursive algorithms
- Challenges: Proper transverse momentum distributions, QED/EW matching algorithms

J. Kalinowski/W. Kotlarski/P. Sopicki/A.F. Zarnecki, 2020

J. R. Reuter, DESY

Parton Showers, Matching, Merging, Hadronization

- 0
- 0
- 0
- 0

Shower	Ordering	NLL Validation
PanScales [2002.11114]	$^{1}0 \leq \beta < 1$	Fixed and all order numerical tests for a range of observables
Alaric [2208.06057]	$k_t \ (\beta = 0)$	Analytical, numerical tests for global event shapes
Deductor [2011.04777]	$egin{array}{ccc} k_t, \Lambda & (eta & = \ 0, 1) \end{array}$	Analytical and numerical tests for thrust
Manchester- Vienna [2003.06400]	$k_t \ (\beta = 0)$	Analytical for thrust and multiplicity

J. R. Reuter, DESY

Parton showers resums large logarithms; provide exclusive multi-jet events

A lot of progress driven by LHC: final-state showers already accurate at NLL, NNLL w.i.p.

"Interleaved" showers: QCD / QED / EW emissions $\alpha_s/\alpha \sim 15$ (sampled with veto algorithm)

Matching: consistently combine fixed-order emissions with resummed shower emissions

Parton Showers, Matching, Merging, Hadronization

- 0
- 0
- 0
- 0

Parton showers resums large logarithms; provide exclusive multi-jet events A lot of progress driven by LHC: final-state showers already accurate at NLL, NNLL w.i.p. "Interleaved" showers: QCD / QED / EW emissions $\alpha_s / \alpha \sim 15$ (sampled with veto algorithm) Matching: consistently combine fixed-order emissions with resummed shower emissions

Parton Showers, Matching, Merging, Hadronization

- 0
- 0
- 0
- 0

J. R. Reuter, DESY

Parton showers resums large logarithms; provide exclusive multi-jet events A lot of progress driven by LHC: final-state showers already accurate at NLL, NNLL w.i.p. "Interleaved" showers: QCD / QED / EW emissions $\alpha_s / \alpha \sim 15$ (sampled with veto algorithm) Matching: consistently combine fixed-order emissions with resummed shower emissions

Thresholds and "dedicated processes"

- Special treatment: t and W mass measurements at threshold with precisions at $10^{-4} 10^{-5}$ precision
- Exclusive Monte Carlo need to take into account QED and QCD threshold effects

J. R. Reuter, DESY

Improvements needed: e.g. shower matching, NLO EW corrections, etc.

Special luminometry codes: Bhabha scattering ($\ell^+ \ell^- \to \ell^+ \ell^-$) and diphotons ($\ell^+ \ell^- \to \gamma \gamma$) [$10^{-4} - 10^{-5}$ precision]

Support for most generic BSM

Subscription Service And MC Examples and MC generators: **Universal Feynman Format (UFO)** v1 1108.2040 v2:2304.09883

J. R. Reuter, DESY

BSM feebly interacting particles

Heavy Neutral Leptons (HNL)

Dark Photons Z_D

Axion Like Particles (ALPs)

Exotic Higgs decays

Sever between "Lagrangian tools" (LanHEP/SARAH/FeynRules) and MC generators: **Universal Feynman Format (UFO)** v1 1108.2040 v2:2304.09883

LLPs that are semi-stable or decay in the sub-detectors are predicted in a variety of BSM models:

- Heavy Neutral Leptons (HNLs)
- **RPV SUSY** •
- Dark photons •
- ALPs
- Dark sector models

Big challenge: NLO EW for BSM models (e.g. renormalization scheme!)

J. R. Reuter, DESY

LCWS 2024, U. of Tokyo, 8.7.2024

12 / 15

More Challenges of MC Event Generators

J. R. Reuter, DESY

More Challenges of MC Event Generators

J. R. Reuter, DESY

- Typical MC generator $\gtrsim 0.5$ M lines of code
- Many physics parts: necessity of a team/collaboration
- No tool implements all physics (and probably never will)
- Modularity and interchangeability is a must
- e.g. typically interfaces to ca. 15 external libraries
- Unit testing & Continuous integration

LCWS 2024, U. of Tokyo, 8.7.2024

13 / 15

on will)

More Challenges of MC Event Generators

J. R. Reuter, DESY

- Typical MC generator $\gtrsim 0.5$ M lines of code
- Many physics parts: necessity of a team/collaboration
- No tool implements all physics (and probably never will)
- Modularity and interchangeability is a must
- e.g. typically interfaces to ca. 15 external libraries
- Unit testing & Continuous integration
- 3—5 major MC event generators
- Most of these MC members will retire around 2040-45
- Need for ca. MC 8—10 staff positions world-wide in the next ca. 20 years
- Already many example of "zombie codes" in experiments

Conclusions & Outlook

- Monte-Carlo generators almighty workhorses of particle physics!! 9
- MCs implement all necessary SM and BSM physics 9
- Tedious work for MC collaboration members: difficult long-term planning of MC collaborations 9
- NLO QCD+EW for SM and NLO QCD BSM (almost) under control, attempts for NNLO automation
- Precision in initial-state QED radiation resummation and exclusive photons crucial 0
- Parton Showers for QCD and QED radiation much matured (now up to NLL for FSR) 9
- 0 Hadronization will be probed with much enhanced precision at future e^+e^- colliders (improvements?)
- Computing bottlenecks: parallelization & optimization of phase space integration, negative weights 0
- Sustainability of codes big issue (sustainability of code and Nature) 9

J. R. Reuter, DESY

MC Event generators: Accuracy vs. Precision

J. R. Reuter, DESY

Visit the Generator session Wednesday 14:00 hrs Koshiba Hall !

