Opportunities & Experimental Challenges at the Higgs-Top interface

LCWS 2024 @ Tokyo, July 8-11, 2024

Junping Tian (U. Tokyo)

many thanks to M. Vos, J. List, D. Jeans, et al for helpful discussions

(caution: significance bias from my selection)

Higgs & Top-quark "naturally" engaged in probing BSM

• gauge hierarchy problem

 many models require certain top-quark "partners" to solve the problems

vacuum stability

Opportunities from Higgs-Top interplay

- sensitivity to y_t in H—> $\gamma\gamma$ decay
- sensitivity to y_t in e+e- —> tt threshold scan

Challenges: large NLO uncertainties induced in precision EW and Higgs measurement

- with the help of LHC top data, Higgs coupling precisions @ ILC250 are almost restored
- note: top data from LHC Run 2 is not constraining enough

Mitigating challenges: beam polarization helps

 beam polarizations double independent observables, more robust in resolving various effects from top-EW at NLO

[Jung, Lee, Perello, Vos, JT, arXiv:2006.14631]

λ_{HHH}: emerging new opportunities from single-Higgs

[ESUPP 2020 arXiv:1910.11775] [—>talk by Jorge de Blas]

- note: 5σ is potentially reachable at an e+e- < 500 GeV
- Would that be a discovery of Higgs self-coupling?

Challenges: three hurdles to clarify

How to discriminate with HZZ coupling

[McCullough, '13]

$$\delta_{\sigma}^{240} = 100 \left(2\delta_Z + 0.014\delta_h \right) \%$$

- $\delta\sigma_{ZH} < 1\%$ is a necessity; but not sufficient
- δσ could receive contributions from many other sources
 —> δh ~ 500% at 250GeV only; [Gu, et al, arXiv:1711.03978]

b "easy" solution: lift degeneracy by multiple √s

How to discriminate with HZZ coupling

[McCullough, '13]

$$\delta_{\sigma}^{240} = 100 \left(2\delta_Z + 0.014\delta_h \right) \%$$

difficult solution: using differential cross section

- effect of λ can be absorbed into anomalous HZZ coupling

$$\mathcal{L} = m_Z^2 (\frac{1}{\nu} + \frac{a}{\Lambda}) H Z^{\mu} Z_{\mu} + \frac{b}{2\Lambda} H Z^{\mu\nu} Z_{\mu\nu} + \frac{\tilde{b}}{\Lambda} H Z^{\mu\nu} \tilde{Z}_{\mu\nu}$$

angular meas. may help [-> poster by Andrea Maria]

Challenges: $\delta \sigma_{ZH} << 1\%$?

- A: yes! Just give me 1 million recoil Higgs events —>0.1%
- B: likely! Assume only 1/4 of the 1M events useful -> 0.2%
- C: let's look at some systematics first

a crucial requirement for measuring σ_{ZH} using recoil mass technique: independent of how Higgs decay —> who not just test it!

Challenges: δσ_{ZH} << 1%?

• Z—> $\mu\mu$: δ Efficiency ~ 1%

[Yan et al, arXiv:1604.07524]

16.3 %

2.3 %

$H \rightarrow XX$	bb	cc	gg	$\tau \tau$	WW*	ZZ^*	$\gamma\gamma$	γZ	
BR (SM)	57.8%	2.7%	8.6%	6.4%	21.6%	2.7%	0.23%	0.16%	
$\mathrm{BDT}>$ - 0.25	88.90%	89.04%	88.63%	89.12%	88.96%	89.11%	88.91%	88.28%	
$M_{ m rec} \in [110, 155] \; { m GeV}$	88.25%	88.35%	87.98%	88.43%	88.33%	88.52%	88.21%	87.64%	

		Decay mode	$arepsilon_{\mathscr{L}>0.65}^{ ext{vis.}}$	$arepsilon_{\mathscr{L}>0.60}^{ ext{invis.}}$	$arepsilon^{\mathrm{vis.}}+arepsilon^{\mathrm{invis.}}$
		$H \rightarrow invis.$	<0.1 %	23.5 %	23.5 %
		${ m H} { m ightarrow} q \overline{q} / g g$	22.6%	<0.1 %	22.6 %
		${ m H} ightarrow { m W} { m W}^*$	22.1 %	0.1~%	22.2 %
• Z—>qq:		${ m H} ightarrow { m ZZ}^*$	20.6~%	1.1~%	21.7 %
	qq: oetticiency ~ 15%	${ m H} ightarrow au^+ au^-$	25.3 %	0.2 %	25.5 %
		${ m H} ightarrow \gamma \gamma$	25.7~%	<0.1 %	25.7 %
		$H \to Z \gamma$	18.6 %	0.3 %	18.9 %
[Thomson, arXiv:1509.02853]		$H \rightarrow WW^* \rightarrow q\overline{q}q\overline{q}$	20.8~%	<0.1 %	20.8 %
		$H \to WW^* \to q \overline{q} \ell \nu$	23.3 %	<0.1 %	23.3 %
[Iomita	2015; Miyamoto, arXiv:1311.2248 j	$H ightarrow WW^* ightarrow q \overline{q} au u$	23.1 %	<0.1 %	23.1 %
		$H \to WW^* \to \ell \nu \ell \nu$	26.5 %	0.1~%	26.5 %
		${ m H} ightarrow { m W}{ m W}^* ightarrow \ell u u u$	21.1 %	0.5 %	21.6%

▶ trash 99% of those 1M events unless one can improve the bias

 $H \to WW^* \to \tau \nu \tau \nu$

 $18.7 \,\%$

How to discriminate with top-Yukawa coupling

mitigated by LHC top-Yukawa measurement

[Durieux, Gu, Vyronidou, Zhang, '18]

How to discriminate with 4-fermion interaction

probably the most pressing

- the effects from (many) eett operators have just been calculated! [Dawson et al, arXiv:2406.03257]
- need to facilitate both theory & experimental studies towards a new global SMEFT fit
- need HL-LHC projection for eett; need projections at e+e-, probably at multiple √s ~350/365/500 —> [talk by Marcel Vos]
- the new fit should include Higgs+EWPOs+WW+top-EW+4fermion, include NLO SMEFT contributions in ZH / EWPOs; volunteers?

λ_{HHH} : THE opportunity that we are almost sure

- Much less challenge from degeneracies
- Main challenges are related to how we can improve experimental analyses

di-Higgs: can we improve $\Delta \lambda_{HHH}$ by a factor of 5?

a lot of room for improvement by advanced analysis technique:

flavor tagging, jet-clustering, kinematic fitting, matrix element method, machine learning, etc

[talk by R.Tagami]

[talk by B.Bliewert]

λннн: updated projection

- two production channels combined at all √s: WW-fusion channel rapidly becomes useful just a little above 500 GeV
- Iuminosity now also scaled proportionally to √s

note: this is based on old DBD analysis; large room from new analysis

summary

- Higgs & top are intimately engaged; many opportunities to learn Higgs physics from top-quark events, vise visa
- NLO effects from top-quark play very important role in the precision Higgs/EW measurements; (HL-)LHC input are very important for future Higgs factories
- A new global SMEFT fit is needed urgently to address the opportunity / challenges in probing λ_{HHH} using single-Higgs
- Updated λ_{HHH} projection using di-Higgs suggests discovery potential just a little above 500 GeV

backup

λ_{HHH}: di-Higgs & single-Higgs processes

Higgs self-coupling: when $\lambda_{\text{HHH}} \neq \lambda_{\text{SM}}$?

- profound effect on di-Higgs processes
- complementarity between ZHH & vvHH (& LHC): different interference
- if $\lambda_{HHH} / \lambda_{SM} = 2$, λ_{HHH} be *discovered* (~13%) using ZHH at 500 GeV e+e-

Top and trilinear

light shades: 12 Higgs op. floated + 6 top op. floated dark shades: 12 Higgs op. floated + 6 top op. \rightarrow 0

- Uncertainties on the top have a big effect on the Higgs
 - Higgsstr. run: insufficient
 - Higgsstr. run \oplus top@HL-LHC: large top contaminations in $\bar{c}_{\gamma\gamma,gg,Z\gamma,ZZ}$
 - Higgsstr. run $\oplus e^+e^- \rightarrow t\bar{t}$: large y_t contaminations in various coefficients
 - Higgsstr. run $\oplus e^+e^- \rightarrow t\bar{t} \oplus top@HL-LHC$: top contam. in \bar{c}_{gg} only

Gauthier Durieux – ECFA mini-workshop – Higgs self-coupling – 15 May 2024

Differential *hZ* information

[Back-of-the-envelope calculations!!] and discussions with Fabio Maltoni & Xiaoran Zhao

ZZh loop κ_{λ} vertex: $F_a(p_i^2) (\epsilon_1 \cdot \epsilon_2) + F_b(p_i^2) (p_1 \cdot \epsilon_2)(p_2 \cdot \epsilon_1)$ with $F_b/F_a \sim 10^{-2}$ so only $\lesssim 10^{-4}$ differential effect

¿exploitable with an optimal discriminant?

Gauthier Durieux – ECFA mini-workshop – Higgs self-coupling – 15 May 2024

(iii) improving jet-clustering algorithm?

ZHH->vvbbbb (BG: ZZH and ZZZ)

scatter plot of two Higgs masses

- the mis-clustering of particles degrades significantly the separation between signal and BG.
- * it is studied that using perfect color-singlet-jet-clustering can improve $\delta\lambda/\lambda$ by 40%

(i) beyond SMEFT: large $\delta \lambda_{hhh}$; light scalars

[recent models with even larger hierarchy δ_{hhh} / δ_{hvv}: Durieux, McCullough, Salvioni, '22]