

Highlights from LHC Detector Upgrades

Gustaaf Brooijmans on behalf of the ALICE, ATLAS, CMS and LHCb Collaborations

International Workshop on Future Linear Colliders University of Tokyo, July 7-11, 2024

Gustaaf Brooijmans

Highlights from LHC Detector Upgrades

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

- The High Luminosity LHC
- Tracking
- Timing
- Cherenkov
- Calorimetry
- Muons
- Trigger and data acquisition
- Closing

Highlights from LHC Detector Upgrades

Outline

2

High Luminosity-LHC

- LHC so far
 - Run 1 (2010-2012, 7-8 TeV, ~30 fb⁻¹)
 - Higgs discovery
 - Run 2 (2015-2018, 13 TeV, ~150 fb⁻¹)
 - Observed Higgs is within ~20% of the SM Higgs, tribosons, 4 tops, ... no new physics yet
 - Run 3 (2022-2025, 13.6 TeV, underway)
 - Get to ~250 fb⁻¹
 - Reaching the edge of current detector capabilities (pile-up at ~60 interactions/bunch crossing)
- HL-LHC: 14 TeV, 3000+ fb⁻¹ (ATLAS and CMS)
 - **20x** more data than analyzed so far!
 - Expect to measure di-Higgs production

Highlights from LHC Detector Upgrades

Κλ

3

- Instantaneous luminosity target is 7.5 x LHC design luminosity Expect up to 200 proton-proton collisions per bunch crossing, ie every 25 ns • Current expectation is to operate for about ten years to collect
- 3000+ fb⁻¹, 3 x design
 - Multi-MRad integrated dose for inner tracking detectors, well beyond expected survival range of current detectors
 - 200 pile-up events implies complex events
 - Increase detector granularity, add handles (timing!)
 - High rate of interesting events
 - Move offline algorithms upstream into the trigger system, write more data to "tape"
 - Offline computing challenge!

HL-LHC Environment

The Experiments

- Increased granularity, capability
 - ATLAS & CMS go from tens of millions of channels to ~5 billion (10+ m² of pixels!)
 - Industrialize production, simplify assembly
 - Extend range from $\eta \le 2$ to $\eta \le 4$
 - 3D pixels at inner radii
 - Read out at 1 MHz
 - CMS Outer Tracker provides track stubs to Level-1 trigger
 - Dual phase CO₂ cooling
 - ALICE and LHCb use Monolithic Active Pixels

- Integrated sensors and read-out!
- For ALICE, bent, stitched sensors!

Gustaaf Brooijmans

Timing

- Go to "4-D tracking" by including precise timing detectors in track reconstruction
 - LGAD-based (typically) sensors in front of calorimeters
 - ALICE barrel + endcap (PID mainly), ATLAS only endcaps, CMS LGADs in endcaps, LYSO crystals + SiPMs in barrel, LHCb in the VELO (Vertex Locator) but technology TBD
 - Reject pile-up tracks and assist in particle ID
 - Target 50 ps or better resolution (electronics included)

Gustaaf Brooijmans

First major 28nm

ASIC designs in community

Highlights from LHC Detector Upgrades

Cherenkov Detectors

(Lad

angle

Cherenkov

0.05

- Timing detectors effective for particle ID at low momenta, but to extend range, rely on **Cherenkov detectors**
 - ALICE exploring aerogel radiator read out by SiPMs at R≈120 cm
 - LHCb: keep RICH radiator (C₄F₁₀), but
 - Reconfigure/new mirrors
 - Replace MaPMTs with SiPMs: handle higher rates, improve time resolution to reject combinatoric background

- If new calorimeters needed, increase granularity and timing performance ("5D")
 - CMS end cap crystal light yield will become insufficient: replace with Si-absorber (Si cells are ~1 cm²) and scintillator-absorber (SiPMon tile, 4-32 cm²) <u>"imaging" calorimeter</u>
 - LHCb exploring SpaCal for inner radii
 - Crystal fibers at innermost radii
 - ATLAS will upgrade read-out only, going to free-running architecture

ALICE 3 likely to use combination of PbWO₄ and Pb/Scintillator

Calorimetry

CMS HGCAL TDR

Silicon

CE-E

CE-H

Highlights from LHC Detector Upgrades

- Main challenge is dealing with high rates in the forward regions
 - MHz/cm²!
- Both CMS and LHCb pursuing **GEM-type technologies**
 - Technology already used in LHCb
 - ල් ¹ ප Improved version ("μ-RWELL"), capable of sustaining ~10 MHz/cm² demonstrated in test beams

Muon Systems

LHCb TDR: test beam results

Trigger and Data Acquisition

- Increase bandwidth, exploit new technologies, move algorithms upstream in the trigger architecture
 - ATLAS and CMS will increase rate to tape from 1 kHz to 10 kHz (~4 Tbps!)
 - Bandwidth from hardware to software trigger expected to be close to 1 MHz $-HH \rightarrow bbbb$ will remain hard to trigger on, maybe even harder if non-SM
 - Hardware trigger systems (ATLAS and CMS) based on ATCA blades hosting large FPGAs and many 25 Gbps links
 - Increased granularity (eg full calorimeter info), tracking (CMS), anticipate to run Machine Learned algorithms, O(10 µs) latency
 - Software trigger systems will implement algorithms very close to offline, implemented on heterogeneous computing farms

Mix of FPGA, GPU and CPU

Gustaaf Brooijmans

11

- High Luminosity LHC construction is well underway Much deeper probe of the TeV scale and beyond
- Significant rebuild of the detectors
 - New trackers, new readout electronics and trigger and data acquisition systems
- Advent of new technologies
 - MAPS pixel detectors
 - < 50 ps resolution silicon timing systems</p>
 - High granularity silicon calorimetry
- There will be important lessons for the next generation of e⁺e⁻ (as well as pp and $\mu^+\mu^-$) collider detectors

Closing

Highlights from LHC Detector Upgrades

Highlights from LHC Detector Upgrades

• Slide for testbeam and similar results

Gustaaf Brooijmans

Highlights from LHC Detector Upgrades

Timing

The Higgs Sector

- Left-handed nature of weak interactions forbids "direct" fermion mass Mechanism by which fermions acquire mass has to "connect" to parity violation • Mass terms $y_f(\overline{\psi}_L \phi \psi_R)$ rather than $m(\overline{\psi}_L \psi_R)$, with ϕ a weak SU(2)_L (at least)

 - doublet
- Of φ's 4 degrees of freedom
 - 3 are the longitudinal W and Z polarizations (which thus acquire mass)
 - I physical Higgs boson state
- For everything to work, $V(\phi)$ is (lightly) constrained:
 - Higgs vacuum expectation value cannot be 0 (or $-\infty$)
 - In polynomial form, at least order 4
 - SM *assumes* minimal form: V = $\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$ with $\mu^2 < 0$ and $\lambda > 0$

Higgs Observation at the LHC

- The existence of a Higgs boson is firmly established
 - Couplings match SM prediction fairly well, but 20-100% level deviations allowed

Gustaaf Brooijmans

Measuring the Higgs Potential

- The Standard Model predictions for Higgs production and decay are robust, as the couplings to bosons and fermions are set by their masses
 - But this is not so true for the Higgs potential, which could be more complex
 - Around minimum, expand V = $\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2 \supset \lambda v^2 H^2 + \lambda v H^3 + (\lambda/4) H^4$
 - First term is just Higgs mass, next are trilinear and quartic couplings
 - So Higgs mass sets λ , then probe if indeed get the same λ for the others -Requires measuring multi-Higgs production
- Multi-Higgs production cross-sections are small
 - In particular in the Standard Model, where there is large destructive interference

• It's (mostly) easier to see new physics than the Standard Model! Quartic term will need higher energy (VBF di-Higgs production...)

- Higgs discovery completes the **Standard Model**
 - Fully consistent, complete, precise description of strong, electromagnetic and weak interactions
- Even generate fermion masses
 - But that is the <u>only</u> property of fermions we "understand"

Highlights from LHC Detector Upgrades

Standard Model Today

New Physics at the HL-LHC

- HL-LHC will run at same energy as LHC (same dipole magnets)
 - But 20x more luminosity (or more)
 - For background-free searches, sensitivity is linear (in signal cross-section) with data increase
 - For searches with background, sensitivity goes with square root

New Physics at the HL-LHC

- HL-LHC will run at same energy as LHC (same dipole magnets)
 - But 20x more luminosity (or more)
 - And new tools, more complex analyses, etc.
 - Machine learning increasingly part of our arsenal

Dilepton Resonances

New Tools ATLAS-CONF-2022-045

Anomaly detection search for new resonances decaying into a Higgs boson and a generic new particle X in hadronic final states using $\sqrt{s} = 13$ TeV *p p* collisions with the ATLAS detector

The ATLAS Collaboration

Y mass regime, where the H and X have a significant Lorentz boost. A novel anomaly detection signal region is implemented based on a jet-level score for signal model-independent tagging of the boosted X, representing the first application of fully unsupervised machine learning to an ATLAS analysis. Two additional signal regions are implemented to target a

(Indirect) New Physics at HL-

- Precision measurements to probe higher energy scales
 - Probe PeV scale in up-type quark sector
 - Pin down CP violation in B_s system (π/K separation from timing detectors?)
 - Observe $B_d \rightarrow \mu\mu$, measure $B_s \rightarrow \mu\mu$ at better than 10% level

CPV in B_s ATLAS-PHYS-PUB-2018-041

B_{d/s} → μμ

- (HL-)LHC is a top, Z, W factory; only place to study vector boson scattering, ...
- Will also want to include special runs
 - "Low" luminosity for W mass measurement
 - Heavy ions: quark-gluon plasma studies, light-by-light scattering, ...

W Mass

Precision SM Measurements

