

Jul 8 – 11, 2024 The University of Tokyo, Japan Asia/Tokyo timezone

Highlights from detectors for EIC

TAKU GUNJI CENTER FOR NUCLEAR STUDY THE UNIVERSITY OF TOKYO

EIC = a machine that will unlock the secrets of the strongest force in Nature

- the major US project in the field of nuclear physics
- the world's first collider for polarized electron and polarized proton (and light ions) and electron-nucleus collisions
 - EIC hosted at Brookhaven National Laboratory
 - 80% polarized electrons from 5-18 GeV
 - 70% polarized protons from 40-275 GeV
 - Ions from 40-110 GeV/u
 - Polarized light ions 40 -184 GeV (He³)
 - 100-1000 x HERA luminosities:10³³-10³⁴ cm⁻²s⁻¹
 - CMS energies: $\sqrt{s} = 29-140$ GeV
 - foreseen to start operation in early 2030's

Science Goal of EIC

SPIN is one of the fundamental properties of matter. All elementary particles, but the Higgs carry spin. Spin cannot be explained by a static picture of the proton It is the interplay between the intrinsic properties and interactions of quarks and gluons

The EIC will unravel the different contribution from the quarks, gluons and orbital angular momentum.

Does the mass of visible matter emerge from quarkgluon interactions?

Atom: Binding/Mass = 0.00000001 Nucleus: Binding/Mass = 0.01 Proton: Binding/Mass = 100

For the proton the EIC will determine an important term contributing to the proton mass, the so-called "QCD trace anomaly

How are the quarks and gluon distributed in space and momentum inside the nucleon & nuclei? How do the nucleon properties emerge from them and their interactions? How can we understand their dynamical origin in QCD? What is the relation to Confinement?

Is the structure of a free and bound nucleon the same? How do quarks and gluons, interact with a nuclear medium?

How do the confined Poe Matter of Participation

emerge from these quarks and gluons? How do the quarkgluon interactions create nuclear binding?

-in

5

How many gluons can fit in a proton? How does a dense nuclear

environment affect the quarks and gluons, their correlations, and their

interactions?

gluon density in nuclei? Does it saturate at high energy?

ePIC experiment

ePIC experiment collaboration

Central Barrel

Tracking:

- New 1.7T solenoid
- Si MAPS Tracker
- MPGDs (µRWELL/µMegas)

PID:

- hpDIRC
- pfRICH
- dRICH
- AC-LGAD (~30ps TOF)

Calorimetry:

- Imaging Barrel EMCal
- PbWO4 EMCal in backward direction
- Finely segmented EMCal +HCal in forward direction
- Outer HCal (sPHENIX re-use)
- Backwards HCal (tail-catcher)

Technologies : Tracking

μ Vertex Tracker	Barrel Tracker	Outer Barrel MPG	GD Tracker	EndcapTracker		
		MicroMegas Tracker Main Fu	μRWELL Tracker	MAPS Disks	μRWELL Disks	
Excellent momentum 0.05%pT⊕0.5% and spatial resolution 20µm/pT⊕ 5µm Displaced vertex reconstruction		Provide redundancy and pattern recognition for tracking	Tracking close to hpDIRC detector to improve angular and space point resolution. Redundancy and pattern recognition for tracking	Excellent momentum 0.05 (0.10)% pT⊕1.0 (2.0)% and spatial resolution 30μm/pT⊕ (20 – 40) μm	Provide redundancy and pattern recognition for tracking	
Monolithic Active Pixel Sensor \rightarrow ALICE ITS3 MOSAIX sensor (65 nm) small pixels (~18 mm) and power consumption (<20 mW/cm ²)		Proven Tec Cylindrical resistive Micromegas technology Used: ATLAS NSW, CLAS12, SPHENIX, MINOS& T2K TPC	hnology			
	EIC Large Area Sensor (LAS), modification of ITS3 sensor with 5 or 6 RSU forming staves as the basic building elements for the Outer Barrel	world's fir	st at epic 24 planar Thin-gap & double amplification (GEM & μRWELL) modules & 2D-strip readout	EIC Large Area Sensor (LAS), staves as the basic building elements for the MAPS disks	GEM- μ Rwell hybrid configuration with increased gain	

Technologies : Calorimeters

Backward ECal	Barrel ECal	Forward ECal	Backward HCal	Barrel HCal	Forward HCal
	AstroPix: silicon sensor with 500x500µm² pixel size developed for the Amego-X NASA mission ScFi Layers with two-sided SIPM readout				Swer art ert
scattered lepton detection → very high-precision	scattered lepton and g detection, hadronic final state characterization	Main F lepton and g detection, hadronic final state characterization $\rightarrow \pi^0$, γ separation	function muon and neutral detection → improved jet Energy reconstruction	muon and neutral detection → improved jet Energy reconstruction	particle-flow measurements
Proven Technology					longitudinal segmented
PbWO4 – crystals → long lead procurement	Pb/SciFi sampling part using SiPMs combined with imaging section (6 layers) interleaving Pb/SciFi with ASTROPIX	Tungsten-powder + SciFi SPACAL design Developed through EIC R&D and applied successfully in sPHENIX	Steel + Scintillator SiPM- on-tile	Steel + Scintillator design re-used from sPHENIX	Steel + Scintillator SiPM- on-tile Pioneered by CALICE analog HCal High resolution insert next to beam-pipe
SiPM as Photonsensors	Use of ASTROPIX in Calorimetry	world's fi	rst at epic		first-time full-size CALICE like calorimeter in collider experiment

Technologies : PID

Far-Forward/Backward

Zero Degree Calorimeter

Current Design

carbon-fiber frame for LYSO crystals

Main Function:

measure bunch-by-bunch luminosity through Bethe-Heitler process **Technology:**

Pair-spectrometer: each with 2 tracking layers of AC-LGAD Calorimeter: Tungsten-powder + SciFi SPACAL Main Function: detection of forward scattered neutrons and γ Technology: EMCAL: 2x2x20 cm³ PbWO₄ or LYSO HCAL: Steel-SiPM-on-Tile

Roman Pots and Off-Momentum Detectors

12

Main Function: detection of forward scattered protons and nuclei Technology:

2 stations with 2 tracking layers each AC-LGAD / EICROC ($500x500~\mu\text{m}^2$ pixel)

3 peam

Main Function: detection of forward scattered protons and and γ Technology: 4 tracking layers each AC-LGAD / EICROC (500x500 μ m² pixel) Synergy with forward ToF EMCAL: 2x2x20 cm³ PbWO₄ calorimeter

B0 Magnet Spectrometer

Luminosity System

Main Function:
detection of scattered electronsTechnology:2 stations with 4 tracking layers each (16x18cm²)Si / Timepix4Calorimeter: Tungsten-powder + SciFi SPACAL

Coverage of ePIC

Streaming

DAQ

- No External trigger
- All collision data digitized but aggressively zero suppressed at FEB
- Low / zero deadtime
- Collision data flow is independent and unidirectional-> no global latency requirements
- Avoiding hardware trigger avoids complex custom hardware and firmware
- Data volume is reduced as much as possible at each stage ensuring that biases are controlled

14

Integrate AI/ML as close as possible to subdetectors → cognizant Detector

<u>Summay</u>

- EIC = a machine that will unlock the secrets of the strongest force in Nature
 - the world's first collider for polarized electron and polarized proton (and light ions) and electron-nucleus collisions
 - Detailed studies of 3D structure of nucleons and nuclei, origin of spin and mass, emergent properties of dense gluonic matter
- PIC Collaboration launched to build the detectors in EIC
 - Cutting-edge technologies in various fields (MAPS, AC-LGAD, photo-sensors, ASIC, streaming readout & DAQ, AI/ML technologies)
 - Start construction from 2026 and will start commissioning from 2030. Early science will begin from 2032 or 2033.
- Synergies with HEP community in detector developments (and some of the science)

Backup

17

https://alice-collaboration.web.cern.ch/2023_ALICE_UPC

ePIC experiment

SPADI-Alliance

SPADI Alliance

19

Signal processing and data acquisition infrastructure alliance

- 7 working groups
 - FEE, timing distribution, streaming SW,
 - Online processing (including hardware accelerators, AI/ML)
 - UI, Computing, Packaging, Analysis SW

Streaming DAQ and computing

Streaming DAQ performance evaluation by using J-PARC E50 (May. 2024)

- \Rightarrow Streaming DAQ: Only TDC w/ TOT
 - FEE: 1G/10Gbps network (Optical link)
 - Streaming TDC: AMANEO
 - MPPC module: CIRASAME
 - Timing synchronization (MIKUMARI system)

SPADI

Alliance

20

Beam intensity ~30 MHz (60 M/2.0 sec. spill, 4.2 sec. cycle) \Rightarrow ~1.5 MHz reaction rate (4 g/cm2 LH2 target)

Total expected data rate: ~13 GB/sec. (~100 Gbps during extraction)

- **No Filter:** Sampler → STFB → TFB → FileSink
- **Filtered**: TFB \rightarrow LogicFilter \rightarrow EventSlicer \rightarrow High-level Filter \rightarrow FileSink

