

#### Detector Technologies For Higgs Factories

LCWS 2024 University of Tokyo July 11, 2024

Marcel Demarteau demarteau@ornl.gov

ORNL is managed by UT-Battelle, LLC for the US Department of Energy



## Outline: Technologies toward the realization of a Higgs Factory



#### Precision Studies of the Higgs Will Lead To New Insights



# The HL-LHC is a most powerful machine

- At the start of a new Higgs Factory, the HL-LHC program will have been completed
- With a luminosity of 3 ab<sup>-1</sup> at 14 TeV:
  - 190M Higgs bosons produced!
  - 120k Higgs boson pairs produced
  - Tri-linear coupling a science driver:
    Observe pp --> HH @ 3.4σ





#### Manifestation of New Physics Could Be Subtle



Phys. Rev. D97 (2018) 053003 [1708.08912]

### **High Precision Is Needed**



 Measurements of the machine conditions and theoretical predictions are equally important

$$\frac{\partial m}{\partial \sqrt{s}} \bigg|_{\sqrt{s} = 343 \text{ GeV}} = 0.5$$
$$\frac{\partial \sigma}{\partial m} \bigg|_{\sqrt{s} = 343 \text{ GeV}} = 0.12 \frac{\text{fb}}{\text{MeV}}$$

# Required Detector Technologies For Higgs Factories and Discoveries

### The Underpinning Of Scientific Progress



CBB 787-9080

PEP-4: https://inspirehep.net/literature/114399

ALEPH: https://cds.cern.ch/record/300680/files/cer-0222458.pdf ALICE: https://edms.cern.ch/ui/file/398930/1/ALICE-DOC-2003-011.pdf

Dave Nygren has said the idea for the TPC came to him after he realized that real improvements in particle detection could not be achieved without a radical departure from the old ways.

https://doi-org.ornl.idm.oclc.org/10.1016/j.nima.2018.07.015

# The Underpinning Of Scientific Progress



• From difficult beginnings (VLPC operated at 7K for Dzero scintillating fiber tracker) to being a workhorse for the field in a mere twenty years.

VLPC: Visible Light Photon Counter MRS: Metal- Resistor-Semiconductor MPPC: Multi-Pixel Photon Counter (SiPM)

# The Underpinning Of Scientific Progress



 Continued through progress with MAPS technology and parallel progress in optotransceivers by industry

#### **Detector Concepts Today**













╋

# Transparency in Tracking

- Critical requirements:
  - High spatial resolution
  - Low mass budget
  - No active cooling
  - Low power
  - Hermetic with redundancy



# Next Generation CMOS Trackers and Vertex Detectors





- Mu3e:
  - Ultra-thin, 50 µm, wafer-scale HV-CMOS Monolithic Active Pixel Sensor.
  - 180 nm technology, chip size 20.6 x 23.2 mm<sup>2</sup>; pixel size 80x80 µm<sup>2</sup>
  - **0.5 ‰ X\_0** per layer, <30 µm resolution
- ALICE ITS-3:
  - Ultra-thin (20 μm to 40 μm), wafer-scale
    HV-CMOS Monolithic Active Pixel Sensor.
  - 65 nm technology, chip size 280 x 94 mm<sup>2</sup>, stitched,
  - 0.5 % X<sub>0</sub> per layer, <5 µm resolution
  - Flexible!

#### Flex embedded sensors



Already more than a decade ago, PLUME, SERVIETTE and PLUMETTE collaboration investigated and succeeded at **embedding thin MAPS** sensors in Kapton flex

New fabrication and packaging technologies for CMOS pixel sensors are closing the gap between hybrid and monolithic

#### Alternate Geometries



ALICE ITS3 mechanical bent prototype



# Gaseous Tracking

**Revival** of an old technology with modern readout: drift chamber with cluster counting



Combining **old with new ideas** for cost-effective large-area tracking detectors

#### hybrid amplification GEM-µRWELL with 0.5 mm drift gap



#### Residuals in X-plane vs. track angle $(\theta)$



Nicola De Filippis, this workshop

# Imaging Calorimetry

| Si-W ECAL                                 | (ALICE FoCAL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Scint-W ECAL                               | AHCAL                                   | SDHCAL                              |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------|-------------------------------------|
|                                           | 20 mm W<br>20 mm | Bit State                                  |                                         |                                     |
| 0,5×0,5 cm²<br>×15 (→30) Si layers<br>+ W | 0,003×0,003 cm²<br>× 24 MIMOSA layers<br>+ W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,5×4,5 cm²<br>×30 Scint+SiPM lay.<br>+ SS | 3×3 cm²<br>× 38 Scint+SiPM lay.<br>+ SS | 1×1 cm²<br>× 48 layers GRPC<br>+ SS |

From V. Boudry, Calor 2024

- Many technology options being pursued for imaging calorimeters, with analog, digital or semi-digital readout.
- First true fully imaging calorimeter is the HGCAL of CMS.

# Crystal Calorimetry

• Traditionally, crystal – fully absorbing – calorimetry has obtained the best energy resolution



• Huge range of possibilities through quantum engineering of materials

# Crystal Calorimetry

 Traditionally, crystal – fully absorbing – calorimetry has obtained the best energy resolution



• Huge range of possibilities through quantum engineering of materials

# Hybrid Calorimetry



#### Imaging



# AstroPix MAPS sensor based on ATLASpix3

- 500 µm pixel size
- Time resolution 3.25 ns
- Low power dissipation (~1.5mW/cm2)

#### Sampling

Pb/SciFi 5+1 Layers  $(1.4X_0)$ 

- 5 readout cells per layer
- 1 light-guide per cell
- Two side readout
- Each readout by 4x4 SiPMs of 3x3mm<sup>2</sup>

#### Baseline for ePIC



# **5D Calorimetry**



- Energy Measurement:
  - WLS fiber extends over full length of module
- Timing Measurement:
  - WLS are positioned at strategic locations, such as shower maximum



LuAG:Ce, LYSO:Ce, GAGG:Ce, BGSO, BGO, BSO, PWO, BaF<sub>2</sub>:Y, heavy glasses, plastic scintillators

Large parameter space + matching of fiber materials

#### **Dual Readout Calorimetry**



 Segmented Crystal EM Precision Calorimeter with dual readout, preceded by precision timing detector, followed by fiber-based dual readout hadron calorimeter.





#### Photodetector – Reverse OLED?



iPhone,, iPad, Macbook:

- •
- Pixel size: ~50x50 µm<sup>2</sup> Driven by electronics on periphery •

# Photodetector – Reverse OLED?

#### Stacked OLED



https://www.nature.com/articles/s41598-018-27976-z



https://www.sammobile.com/news/samsungs-new-foldableand-udc-panels-reveal-an-exciting-future/

- Reverse the OLED design: spectroscopic photodetectors
  - Engineer organic materials that absorb the light with a specific wavelength
  - Cherenkov vs. scintillation separation
  - No loss of photosensor coverage
- Integrate with 3D printed scintillators
- Electrical connections through Anisotropic Conductive Films (ACF)



### Nanophotonics



- Improved detection efficiency, timing resolution.
- Possibility for wavelength sensitivity?

#### Impact of ILC Related Detector Development



- At the ALCPG meeting, March 2011 in Eugene Oregon, I presented the slide shown on the left.
- The work within the ILC framework has had significant positive impact on the field and advanced the overall program.

#### Impact of ILC Related Detector Development



- At the ALCPG meeting, March 2011 in Eugene Oregon, I presented the slide shown on the left.
- The work within the ILC framework has had significant positive impact on the field and advanced the overall program.

# Some Observations

- The LC community has advanced detector technologies in a significant way for particle physics and should continue to work towards advancing technologies for a Higgs factory.
- The challenges for a linear or circular collider are quite different (circular with continuous beam, magnetic field, high data rates, power and cooling, ...). Let's accept the challenge to design a detector that works for either!
- Aim for a discovery machine; this will require **novel technologies and new ideas**.

# Some Observations

- The LC community has advanced detector technologies in a significant way for particle physics and should continue to work towards advancing technologies for a Higgs factory.
- The challenges for a linear or circular collider are quite different (circular with continuous beam, magnetic field, high data rates, power and cooling, ...). Let's accept the challenge to design a detector that works for either!
- Aim for a discovery machine; this will require **novel technologies and new ideas**.



• There is plenty of time to explore new ideas; think of of the box and **rethink current paradigms**.

#### A Higgs Factory is an Ambitious Goal



かたつぶり そろそろ登れ 富士の山

小林一茶

Snail It Is Time To Climb Mount Fuji — Issa Kobayashi

#### A Higgs Factory is an Ambitious Goal To Be Realized



- The outcome of the process proposed will depend on many factors, with some important ones not under our control.
- The international scientific community can assist in this process by providing the necessary input for these to enable informed derisions to be made.
- We should build the strongest science case and demonstrate that we can meet the physics challenges with the **most advanced detectors** that we can design, to improve the likelihood that this very ambitious process be realized.
- We need to work together in a unified and objective way, leading with the science. **The ask is huge**; we need to be unified.

### Conclusion

• The linear collider community has been a driving force towards the realization of a next collider.

• Let's continue to "bounce ideas" for **new detector technologies** to strengthen the case for **a** Higgs Factory; we will all benefit.

