

The new Sherpa 3.0 event generator

Alan Price, Frank Siegert

on behalf of the Sherpa collaboration

International Workshop on Future Linear Colliders, Tokyo, July 2024

Monte Carlo event generators

Monte Carlo event generators for LC

Monte Carlo event generators for LC

Good things come to those who wait

* Limited warranty applies.

- Factor 2-100 improvement in the measurement of EWPOs
- 0.1% errors which could be ignored at LEP will dominate at future e⁺e⁻ machines
- On the theoretical side this translates into a much more sophisticated modelling
 - Fixed Order improvements
 - Resummation techniques for both QCD/QED
- Theoretical uncertainties need to be comparable (or lower!) than the experimental

L	Observable	Where from	Current (LEP)	FCC (stat.)	FCC (syst.)	Now FCC
L	M_Z [MeV]	Z linesh. [32]	$91187.5 \pm 2.1\{0.3\}$	0.005	0.1	3
L	$\Gamma_Z [\text{MeV}]$	Z linesh. [32]	$2495.2 \pm 2.1\{0.2\}$	0.008	0.1	2
L	$R_l^Z = \Gamma_h / \Gamma_l$	$\sigma(M_Z)$ [33]	$20.767 \pm 0.025 \{0.012\}$	$6\cdot 10^{-5}$	$1\cdot 10^{-3}$	12
L	$\sigma_{ m had}^0[m nb]$	$\sigma_{\rm had}^0$ [32]	$41.541 \pm 0.037 \{0.025\}$	$0.1\cdot 10^{-3}$	$4 \cdot 10^{-3}$	6
L	$N_{ u}$	$\sigma(M_Z)$ [32]	$2.984 \pm 0.008 \{0.006\}$	$5 \cdot 10^{-6}$	$1\cdot 10^{-3}$	6
L	N_{ν}	$Z\gamma$ [34]	$2.69 \pm 0.15 \{0.06\}$	$0.8\cdot 10^{-3}$	$< 10^{-3}$	60
L	$\sin^2 \theta_W^{eff} \times 10^5$	$A_{FB}^{lept.}$ [33]	$23099 \pm 53{28}$	0.3	0.5	55
L	$\sin^2 \theta_W^{eff} \times 10^5$	$\langle \mathcal{P}_{\tau} \rangle, A_{\mathrm{FB}}^{pol,\tau}[32]$	$23159 \pm 41\{12\}$	0.6	< 0.6	20
	M_W [MeV]	ADLO [35]	$80376 \pm 33\{6\}$	0.5	0.3	12
	$A_{FB,\mu}^{M_Z \pm 3.5 \text{GeV}}$	$\frac{d\sigma}{d\cos\theta}$ [32]	$\pm 0.020\{0.001\}$	$1.0\cdot 10^{-5}$	$0.3\cdot 10^{-5}$	100

[Jadach, Skrzypek, Eur. Phys. J. C79(2019)]

New in Sherpa 3.0: Real photon emissions in the initial state! [Krauss, Schönherr, Price 2022]

 Extension of Sherpa YFS module for soft photon resummation in final state [Krauss, Schönherr 2008]

- Supplemented with collinear logs up to $O(\alpha^3 L^3)$
- Complete treatment of muti-photon kinematics: Explicit photons, no simplified electron PDF
- Matching to full NLO EW underway [Price]

YFS Validation

KKMC: LEP Era YFS MC for e+e- -> ffbar

Comput.Phys.Commun. 130 (2000) 260-325

Superb agreement in σ over a range of \sqrt{s}

Excellent agreement in the photon kinematics

YFSWW: LEP Era YFS MC for e+e- -> WW

Comput.Phys.Commun. 140 (2001) 475-512

Superb agreement in σ over a range of \sqrt{s}

The need for (resummed) QCD

- Don't know how to solve QCD analytically
- Only **perturbation series** in α_s for hard scattering

THE UNIED STATES OF AMERICA BESOLETSON CONTINUED STATES OF AMERICA CONTINUES OF AMERICA CONTIN

- For predictions at fully-realistic particle level (low energies, hadrons, ...): series diverges !
- Resummation necessary, but only feasible in approximation:
 - Parton Showers (PS) resum the large contributions that repeat universally at each order!

Beyond the collinear approximation using higher-order calculations!

NLO matrix elements

Two families of methods, ~automated:

- MC@NLO
 - implementations in MadGraph5_aMC@NLO, Sherpa, Herwig7
- Powheg
 - implementation in POWHEG-Box for various processes, Whizard

Beyond the collinear approximation using higher-order calculations!

NNLO matrix elements

Not automated, individual implementations for several processes (typically colour-singlet, ttbar)

- NNLOPS/MiNNLOPS
- UN2LOPS (Sherpa)
- Geneva

Beyond the collinear approximation using higher-order calculations!

Multi-jet matrix elements Automated for arbitrary processes/models

- **Sherpa** (with state-of-the-art ME generator built-in)
- Herwig7 and Pythia8

 (with external ME generators, e.g. MG5_aMC, Sherpa)

In parallel: Improving the collinear approximation to all orders

- Large efforts on new parton shower algorithms in recent years
 - \rightarrow Daniel Reichelt's talk later in this session

At pp colliders ...

[Denner, Pellen, Schönherr, Schumann 2024]

[Ferencz, Katzy, Höche, FS 2024]

[Denner, Pellen, Schönherr, Schumann 2024]

[Ferencz, Katzy, Höche, FS 2024]

... and at e^+e^- colliders for hadronic final states:

 $e^+e^- \rightarrow jets$

We can combine Sherpa's state of the art QED ISR and QCD FSR.

New YFS seamlessly combines with all of Sherpa's native features!

Yennie-Frautschi-Suura soft-photon resummation does not include $\gamma \rightarrow f^+f^-$ corrections which enter at $\mathcal{O}(\alpha^2)$ Yennie, Frautschi, Suura '61; Krauss, Schönherr '08

Collinear QED evolution:

- reconstruct starting scale of every photon
- evolve in parton shower picture until every photon virtuality drops below $4m_e^2$
- \Rightarrow effect only corrections beyond YFS resummation

Dressing algorithm:

- lepton dressing ambiguous beyond photon FSR
- \rightarrow include secondary flavours? if yes, some, or all?
- depending on dressing algorithm, more or less energy may be recombined into dressed lepton

- Available in one of Sherpa's ME generators (AMEGIC)
 - Recently resurrected for Sherpa 3
- Reweight the ME with pol factor (1+P),(1-P)
- Validated against Madgraph/Whizard
- Automatically included in YFS: Soft photons blind to spin!

$P_{e^-} P_{e^+} \%$	MadGraph	Sherpa
0 0	2100.0(0.72)	2099.5(0.09)
0 60	1825.0(0.63)	1824.1(0.08)
0 80	1733.0(0.66)	1732.3(0.08)
0 -60	2375.0(0.67)	2375.0(0.11)
0 -80	2466.0(0.72)	2466.9(0.11)
60 0	2375.0(0.67)	2375.0(0.11)
60 60	1344.0(0.46)	1343.7(0.06)
60 80	1000.0(0.35)	1000.0(0.04)
60 -60	3406.0(0.97)	3406.4(0.15)
60 -80	3749.0(1.11)	3750.1(0.17)
80 0	2466.0(0.72)	2466.9(0.11)
80 60	1184.0(0.36)	1183.6(0.05)
80 80	756.0(0.26)	755.8(0.03)
80 -60	3749.0(1.11)	3750.1(0.17)
80 -80	4177.0(1.24)	4177.9(0.18)

Table 1: Polarized cross-section for $e^+e^- \to \mu^+\mu^-$ at 91.2 GeV. The results are quoted in fb.

BEAMS:
- 11
11
POLARIZATIONS:
BEAM_1: 0.3
BEAM_2: -0.8

$P_{e^-} P_{e^+} \%$	MadGraph	Sherpa
0 0	0.2402	0.2402
0 60	0.2086	0.2086
0 80	0.1981	0.1981
0 -60	0.2718	0.2718
0 -80	0.2823	0.2823
60 0	0.2086	0.2086
60 60	0.1537	0.1537
60 80	0.1144	0.1144
60 - 60	0.3899	0.3898
60 -80	0.4292	0.4292
80 0	0.1981	0.1981
80 60	0.1354	0.1354
80 80	0.08647	0.0865
80 -60	0.4292	0.4292
80 -80	0.4782	0.4781

Table 1: Polarized cross-section for $e^+e^- \to HZ$ at 250 GeV. The results are quoted in fb.

- Not only beams can be polarised!
 - Is LC physics sensitive to the polarisation of intermediate vector bosons?

• Idea:

Use polarised MC predictions as templates for analyses based on realistic final states

$$\frac{\mathrm{d}\sigma}{\mathrm{d}X} = f_L \frac{\mathrm{d}\sigma_L}{\mathrm{d}X} + f_R \frac{\mathrm{d}\sigma_R}{\mathrm{d}X} + f_0 \frac{\mathrm{d}\sigma_0}{\mathrm{d}X} \left(+f_{int.} \frac{\mathrm{d}\sigma_{int.}}{\mathrm{d}X} \right)$$

- \rightarrow Exploit longitudinal polarisation for EWSB studies
- \rightarrow Exploit SM-suppressed polarisation configurations for BSM studies
- Lessons from LHC:
 - Analytical projections not applicable in the presence of lepton cuts
 - Exclusive predictions in MC event generators possible, ideally with higher order corrections

• Caveats for polarised predictions:

Polarization for intermediate particles

- completeness relation
 - $\left(-g^{\mu
 u}+rac{q^{\mu}q^{
 u}}{m_V^2}
 ight)=\sum_{\lambda=1}^4arepsilon^{\mu}(q,\,\lambda)arepsilon^{*
 u}(q,\,\lambda)$
- leads to interferences between different polarizations

<u>Polarization only defined in production \otimes propagator \otimes decay</u> <u>factorizable amplitudes</u>

- problem: non-resonant diagrams
 → no polarisation definition, but necessary for gauge invariance
- solution: appropriate approximations gauge invariant options:
 - Pole Approximation ((D)PA)
 - Narrow-Width Approximation (NWA)

Methodology:

- Unpolarised simulation run, polarised XS as event weights
- All polarisation combinations, interferences, reference frames in one simulation run
- Accuracy options:
 - nLO QCD+PS matching

[Hoppe, Schönherr, FS, 2023]

Methodology:

Unpolarised simulation run, polarised XS as event weights

 $\langle O \rangle^{(\text{NLOMC})} = \sum \int \mathrm{d}\Phi_B(\{\vec{p}\}) \bar{\mathbf{B}}^{(\mathbf{A})}(\{\vec{a}\}) \ \left| \begin{array}{c} \underline{\bar{\Delta}}^{(\mathbf{A})}(t_0;\{\vec{a}\}) \\ \end{array} \right| O(\{\vec{p}\}) O($

 $\sum_{\{\vec{F}\}} \int \mathrm{d}\Phi_R(\{\vec{P}\}) \, \left| \right|$

 $+ \sum_{\{\widetilde{\imath}j,\widetilde{k}\}} \sum_{F_i=q,g} \int \mathrm{d}\Phi^{ij,k}_{R|B} \; \Theta(t(\Phi^{ij,k}_{R|B}) - t_0) \; O(r_{\widetilde{\imath}j,\widetilde{k}}(\{\vec{p}\}))$

 $R(\{\vec{A}\}) - \sum D_{ij,k}^{(A)}(\{\vec{A}\})$

resolved, non-singular

resolved, singular

 $O(\{\vec{P}\})$

All polarisation combinations, interferences, reference frames in one simulation run

S-event

H-event

Multi-jet merging, e.g. W(ev)Z(mm)+jets

Accuracy options:

Born polarisation

virtual corrections

Polarisation of real

unpolarised)

correction

.

(ultra-collinear/-soft

nLO QCD+PS matching

[Hoppe, Schönherr, FS, 2023]

- NLO EW corrections more & more important to reach precision targets for √s > 1 TeV
- Complete NLO EW calculation possible, but not always feasible
- Possible approximation: EW Sudakov logarithms
 [A. Denner & S. Pozzorini 2000, 2001]
 - NLO EW logarithmically enhanced for energies above EW scale
 - Large contributions in tails of kinematic distributions
 - Can be universally applied to any Sherpa calculation (in particular, in matched multi-jet matrix element calculations)
- Automated in SHERPA [Bothmann, Napoletano 2020, Bothmann et al. 2021]

- Dream of phenomenologists or experimentalists:
 From a model's Lagrangian L → simulated event samples
- Important ingredient: UFO standard to automatically transfer Feynman rules (from FeynRules, SARAH, ...) into event generators
- Sherpa interface available for a while [Höche, Kuttimalai, Schumann, FS 2014]
 - New in Sherpa 3.0.0: UFO 2.0 interface with more flexibility, e.g. with form factors
 - Automatic decay tables/chains
 - Spin correlations
 - Effective field theories (SMEFT, HEFT) via UFO model

- CPU consumption overall improved by factors of \times 39 and \times 43 for V+jets and $t\bar{t}$ +jets [Bothmann et al.] arXiv:2209.00843
- After optimisation, more than two thirds of CPU time spent in phase space sampling and (tree-level) matrix elements

- Motivation: Strong Al-driven HPC trend towards heterogeneous computing resources (i.e. CPU+GPU)
- Novel portable tree-level parton-level event generator PEPPER [Bothmann et al.] arXiv:2311.06198
- Use SHERPA's & PYTHIA's existing LHEH5 interfaces to add particle-level simulation steps [Bothmann et al.] arXiv:2309.13154
- Ideal provider of on-device jet training data for ML applications
- Strongly improved numerical stability for (N)NLO applications

[Bothmann, Campbell, Höche, Knobbe] arXiv:2406.07671

Conclusions

- Hot off the press: Sherpa 3.0.0 released!
 - Download and information on Sherpa homepage: <u>https://sherpa-team.gitlab.io/</u>
 - New user interface (YAML language) Give it a try!
 - Availability in Key4Hep software stack:
 - » Both Sherpa2 and Sherpa3 will be available in the nightlies
 - » source /cvmfs/sw-nightlies.hsf.org/key4hep/setup.sh
 - » Sherpa3-0-0 MyFavouriteProcess.yaml

[Key4Hep => Thomas Madlener's talk]

- Sherpa's LHC expertise carries over to LC
 - Additionally dedicated developments for Linear Collider physics!
- NEW: automated YFS for state-of-the-art QED corrections in the initial state [Alan Price]
- NEW: photon \rightarrow lepton splittings in YFS [Lois Flower]
- NEW: state-of-the-art photo-production of $ee \rightarrow jets$ [Peter Meinziger]

BEAMS: [11, -11] BEAM_ENERGIES: [125.0, 125.0]

ALPHAS(MZ): 0.1188 ORDER_ALPHAS: 1

PARTICLE_DATA: 11: Massive: true

PDF_LIBRARY: None YFS: MODE: ISR

PROCESSES:

- 11 -11 -> 93 93 93{3}: CKKW: pow(10,-2.25/2.00)*E_CMS Order: {QCD: Any, EW: 2}

Backup

- Factor 2-100 improvement in the measurement of EWPOs
- 0.1% errors which could be ignored at LEP will be dominant at future e+e- machines
- On the theoretical side this translates into a much more sophisticated modelling
 - Fixed Order Improvements

	Observable	Where from	Current (LEP)	FCC (stat.)	FCC (syst.)	$\frac{\text{Now}}{\text{FCC}}$
	M_Z [MeV]	Z linesh. [32]	$91187.5 \pm 2.1\{0.3\}$	0.005	0.1	3
	Γ_Z [MeV]	Z linesh. [32]	$2495.2 \pm 2.1\{0.2\}$	0.008	0.1	2
	$R_l^Z = \Gamma_h / \Gamma_l$	$\sigma(M_Z)$ [33]	$20.767 \pm 0.025 \{0.012\}$	$6\cdot 10^{-5}$	$1\cdot 10^{-3}$	12
	$\sigma_{ m had}^0[m nb]$	$\sigma_{\rm had}^0$ [32]	$41.541 \pm 0.037 \{0.025\}$	$0.1\cdot 10^{-3}$	$4 \cdot 10^{-3}$	6
н.	$N_{ u}$	$\sigma(M_Z)$ [32]	$2.984 \pm 0.008 \{0.006\}$	$5\cdot 10^{-6}$	$1\cdot 10^{-3}$	6
н.	$N_{ u}$	$Z\gamma$ [34]	$2.69 \pm 0.15 \{0.06\}$	$0.8\cdot10^{-3}$	$< 10^{-3}$	60
	$\sin^2 \theta_W^{eff} \times 10^5$	$A_{FB}^{lept.}$ [33]	$23099 \pm 53{28}$	0.3	0.5	55
н.	$\sin^2 \theta_W^{eff} \times 10^5$	$\langle \mathcal{P}_{\tau} \rangle, A_{\mathrm{FB}}^{pol,\tau}[32]$	$23159 \pm 41\{12\}$	0.6	< 0.6	20
	M_W [MeV]	ADLO [35]	$80376 \pm 33\{6\}$	0.5	0.3	12
	$A_{FB,\mu}^{M_Z \pm 3.5 \text{GeV}}$	$\frac{d\sigma}{d\cos\theta}$ [32]	$\pm 0.020\{0.001\}$	$1.0\cdot 10^{-5}$	$0.3\cdot 10^{-5}$	100

[Jadach,Skrzypek, Eur. Phys. J. C79(2019)]

$$d\sigma(L, \hat{L}) = \alpha^k \sum_{n}^{\infty} \alpha^n \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \hat{\sigma}_{n,i,j} L^i \hat{L}$$
$$\hat{L} = \log\left(\frac{Q^2}{E_{\gamma}^2}\right) \qquad L = \log\left(\frac{Q^2}{m_e^2}\right)$$

Soft Log

Collinear Log