The WHIZARD generator: **News and Plans** Status report,

BASED UPON:

IN COLLABORATION WITH:

DESY.

P. Bredt / M. Höfer / W. Kilian / M. Löschner / K. Mękała / T. Ohl / T. Striegl / A.F. Żarnecki

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

hep-ph/9607454 ; hep-ph/9806432 ; hep-ph/0102195 ; 0708.4241 ; 1112.1039 ; 1206.3700 ; 1411.3834; 1510.02739 ; 1609.03390 ; 1811.09711; 2108.05362; 2208.09438; 2304.09883

Jürgen R. Reuter

J. R. Reuter, DESY

Talk by Thorsten Ohl 06/2023: https://indico.cern.ch/event/1266492/

WHIZARD **Overview(II)**

- Collider setup: arbitrarily polarized beams, crossing angle, asymmetric beams Ģ
- Ş Event formats available: LHA, LHE(v1-3), HepMC2, HepMC3(RootIO), LCIO, EDM4HEP (w.i.p.)!
- Ģ Factorized processes (unstable feature, NWA, specific decay helicity, polarized resonance decays)
- Automated calculation of BRs of unstable particles, BRs can be set explicitly, e.g. to (N)NLO values Ģ
- BSM models through UFO interface (cf. later)
- Special treatment of top threshold physics (cf. later)
- Reweighting / recasting processes + multiple weights/observables
- Focus here new developments: Completion NLO automation, NLO matching, high-performance, Ģ revalidations, new physics implementations: long-lived particles, initial-state QED treatment, EW PDFs etc.

J. R. Reuter, DESY


```
model = NMSSM
process susyprod = e1, E1 => stau1, Stau1
process staudec = stau1 => neu1, e3
sqrts = 250 GeV
beams = e1, E1 => circe2 => isr
beams_pol_density = a(-1), a(+1)
beams_pol_fraction = 80%, 30%
n_events = 10000
sample format = lhef, stdhep, hepmc
```

simulate (susyprod)

WHIZARD: User support / bug tracker

WHIZARD v3.1.4 (8.11.2023)

→ C û	.hepforge.org/manual/	90% 🚥 🛛 🏠 🔍 Suchen
• WHIZARD		
		WHIZARD 3.0
		A generic
/	Mont	te-Carlo integration and event ger
		for multi-particle proces
		MANUAL '
	Wolfgang Kilian, Thorsten Ohl, Jürgen Reuter,	with contributions from Fabian Bach. Simon Braß. Pia Br
HONE	Schmidt, Marco	Sekulla, Christian Speckner, So Young Shim, Florian Stau
Main Page		
MANUAL, WIKI, NEWS	Contents	
o Manual	Chapter 1 Introduction	
∘ Wiki Page	 1.1 Disclaimer 	
 CLIC page on WHIZARD 	 1.2 Overview 	
 News 	 1.3 Historical remarks 	
 o Tutorials 	 1.4 About examples in this manual 	
 Delphes Fast Simulation 	Chapter 2 Installation	
WHIZARD talks	 2.1 Package Structure 2.2 Proroquisitos 	
	 2.2 Prerequisites 2.3 Installation 	
Launchpad Support Page	Chapter 3. Working with MERGARD	I VVHIZARL
	 chapter 5 Working with Watzakb 3.1 Hello World 	
Public Git Repository	 3.2 A Simple Calculation 	
Support Questions	3.3 WHIZARD in a Computing Environment	
Bug Tracker	 3.4 Troubleshooting 	
DOWNLOADS	Chapter 4 Steering WHIZARD: SINDARIN Overview	
○ Download Page	• 4.1 The command language for WHIZARD	https://whiz
 LC beam spectra 	• 4.2 SINDARIN SCRIPTS	<u>110095.11441112</u>
 FeynRules and SARAH models 	• 4.3 Errors	
Patches/Unofficial versions	• 4.4 Statements	
SUBPACKAGES/INTERFACES O'Maga Matrix Element Concreter		
○ VAMP Monte Carlo Integrator	 4.7 Variables 	
 CIRCE1/2 Beam Spectra Generator 	Chapter 5 SINDARIN in Details	available a
 WHIZARD/FeynRules interface (deprecated) 	 5.1 Data and expressions 	available a
• CONTACT	 5.2 Particles and (sub)events 	
 Launchpad Support Page 	5.3 Physics Models	
o Contact us	5.4 Processes	
	◦ 5.5 Beams	
	 5.6 Polarization 	
	 5.7 Cross sections 	

WHIZARD Tutorial

e.g. for Snowmass, 20.9.2020: _

J. R. Reuter, DESY

https://launchpad.net/whizard

<u>whizard@desy.de</u>

as PDF and web pages

https://indico.fnal.gov/event/45413/

WHIZARD: User support / bug tracker

WHIZARD v3.1.4 (8.11.2023)

○ 合 ब https://launchpad.net/whizard C ŵ

WHIZARD

Overview Code Bugs Blueprints Translations Answers

Registered 2019-06-26 by 🙇 Juergen Reuter

WHIZARD Event Generator

WHIZARD is a program system designed for the efficient calculation of multi-particle scattering cross sections and simulated event samples.

WHIZARD can evaluate NLO QCD corrections in the SM for arbitary lepton and hadron colliders. Tree-level matrix elements are generated automatically for arbitrary partonic processes by using the Optimized Matrix Element Generator O'Mega. Matrix elements obtained by alternative methods (e.g., including loop corrections) may be interfaced as well. The program is able to calculate numerically stable signal and background cross sections and generate unweighted event samples with reasonable efficiency for processes with up to eight final-state particles; more particles are possible. For more particles, there is the option to generate processes as decay cascades including complete spin correlations. Different options for QCD parton showers are available.

Polarization is treated exactly for both the initial and final states. Final-state quark or lepton flavors can be summed over automatically where needed. For hadron collider physics, an interface to the standard LHAPDF is provided. For Linear Collider physics, beamstrahlung (CIRCE) and ISR spectra are included for electrons and photons. The events can be written to file in standard formats, including ASCII, StdHEP, the Les Houches event format (LHEF), HepMC, or LCIO. These event files can then be hadronized.

WHIZARD supports the Standard Model and a huge number of BSM models. Model extensions or completely different models can be added. WHIZARD fully supports external models from UFO files. There are also legacy interfaces to FeynRules and SARAH

The code of released WHIZARD versions is hosted in a publically accessible GitLab: https://gitlab.tp.nt.uni-siegen.de/whizard/public

🕐 Change branding

Maintainer:

Licence:

GNU GPL v3

<u>RDF</u> metadata

🔍 WHIZARDs 🕖

🛛 🌍 External downloads Home page 🌑 Wiki 🚽

Project	inform	ation
---------	--------	-------

Driver:		
	?	

Series and milestones

 \oplus \ominus

3.1.x series is the current focus of development. 🧭

🛞 Register a series 🛛 🕕 View milestones 🛛 🛞 Create snap package

Code		<u>All code</u>	Latest bugs reported
Version control system:	Programming languages:		Bug #2017739: Update new hadronic states in WHIZARD's model files
Cit	Fortrap 2008 ocaml		Reported on 2023-04-26

J. R. Reuter, DESY

https://launchpad.net/whizard

	♡ ⊻ III\ 🗉 🤳 🔍 💐	ර =
	a Juergen Reuter (j.r.reuter) • Log Out
	🕖 Change details	
	🕖 Sharing	
	🕀 Subscribe to bug mail	
	🥙 Edit bug mail	
	Get Involved	
	Report a bug	-
	Ask a question	-
	Register a blueprint	-
	🛕 Help translate	
	Configuration Progress	
	Configuration options	
	🧭 Code	*
	Bugs Translations	*
		<u> </u>
		•
<u>View full history</u>	Downloads	
	Latest version is 3.1.2	
!-10-31	Latest version is 3.1.2 whizard-3.1.2.tar.gz	•
2-10-31	Latest version is 3.1.2 whizard-3.1.2.tar.gz released on 2023-03-21	•
-10-31	Latest version is 3.1.2 whizard-3.1.2.tar.gz released on 2023-03-21 (1) All downloads	•
2-10-31	Latest version is 3.1.2 whizard-3.1.2.tar.gz released on 2023-03-21 (i) All downloads	
2-10-31	Latest version is 3.1.2 whizard-3.1.2.tar.gz released on 2023-03-21 (i) All downloads Announcements	
2-10-31	Latest version is 3.1.2 whizard-3.1.2.tar.gz released on 2023-03-21 i All downloads Announcements WHIZARD 3.1.2 released on 2023-03-21	
2-10-31	Latest version is 3.1.2 whizard-3.1.2.tar.gz released on 2023-03-21 i All downloads Announcements WHIZARD 3.1.2 released on 2023-03-21 Just a bug fix release for a (harmless) cycl build dependence in the WHIZAR	• ic
2-10-31	Latest version is 3.1.2 whizard-3.1.2.tar.gz released on 2023-03-21 i All downloads Announcements WHIZARD 3.1.2 released on 2023-03-21 Just a bug fix release for a (harmless) cycl build dependence in the WHIZAR WHIZARD 3.1.1 released on 2023-03-10	.ic
e-10-31 <u>All bugs</u>	Latest version is 3.1.2 whizard-3.1.2.tar.gz released on 2023-03-21 i All downloads Announcements WHIZARD 3.1.2 released on 2023-03-21 Just a bug fix release for a (harmless) cycl build dependence in the WHIZAR WHIZARD 3.1.1 released on 2023-03-10 Two major bug fixes on numerical stability phase-space mappings close to a	ic of

whizard@desy.de

- 706468 Gaussian or Breit wigner distribution
- 706412 Syntax for forcing two identical particles to different final states
- 706411 Various errors when generating events with (b) jets in the final state
- 706291 Error while generating NLO events with polarized e+ e- beams
- 706197 how to uninstall whizard
- 706070 default cuts
- 706008 issues with installing whizard with openloops

ZARD NLO Automation: Loops & Legs

J. R. Reuter, DESY

WHIZARD NLO Automation: Loops & Legs

- NLO SM automation for lepton-/hadron colliders completed 2022 ĕ Chokoufé; Weiss 2017; Rothe 2021; Stienemeier; Bredt 2022
- FKS subtraction, NLO matrix elements from OpenLoops/Recola/GoSam/...
- also: resonance-aware FKS subtraction cf. Ježo/Nason, arXiv:1509.09071; Chokoufé, 2017
- Setup for automatic differential fixed-order results (histogrammed distributions)
- Photon isolation, photon recombination, light-, b-, c-jet selection; loop-induced processes

J. R. Reuter, DESY

nite by KLN

ar

Some examples for NLO results

ee @ I TeV, NLO QCD

pp @ 13 TeV, NLO QCD

r			Process	W	HIZARD				$\sigma^{ m tot}$	[fb]	$\sigma^{ m sig}$
	WHIZARD	+OpenLoops	Vector boson (pair) plus jets	$\sigma_{\rm LO}[{\rm fb}]$	$\sigma_{\rm NLO}$ [fb]	K	$pp ightarrow t ar{t} W^+$	$\alpha_s^n \alpha^m$	MUNICH _(CS)	WHIZARD	MUNICH _{(C}
Process	$\sigma_{\rm LO}$ [fb]	$\sigma_{\rm NLO}$ [fb]	$pp \rightarrow W^{\pm} *$	$1.3749(8) \cdot 10^8$	$1.7696(10) \cdot 10$	⁸ 1.29	 LO ₂₁	$\frac{1}{\alpha^2 \alpha}$	$2411403(1) \cdot 10^2$	$2.4114(1) \cdot 10^2$	
			$pp \rightarrow W^{\pm}j^{\ast}$ $pp \rightarrow W^{\pm}ii$	$2.046(3) \cdot 10^{6}$ 6 856(12) - 10 ⁶	$2.854(5) \cdot 10^{\prime}$ 7 814(27) - 10 ⁶	1.39	LO_{12}	$\alpha_s \alpha^2$	0.000	0.000	0.00 /
$ e^+e^- \rightarrow jj$	622.737(8)) = 639.39(5)	$pp \rightarrow W^{\pm}jjj$ [†]	$1.840(5) \cdot 10^6$	$1.978(7) \cdot 10^{6}$	1.07	LO_{03}	α^3	$2.31909(1) \cdot 10^{0}$	$2.3193(1) \cdot 10^0$	1.76 /
$e^+e^- \rightarrow iji$	340.6(5)	(317.8(5))	$pp \rightarrow Z$	$4.2541(3) \cdot 10^{7}$	$5.4086(16) \cdot 10$	7 1.27	δNLO_{31}	$\alpha_s^3 \alpha$	$1.18993(2) \cdot 10^2$	$1.1905(5) \cdot 10^2$	1.06 /
	105.0(0)	104.0(4)	$pp \rightarrow Zj$	$7.215(4) \cdot 10^{6}$ $2.264(5) - 10^{6}$	$9.733(10) \cdot 10^{\circ}$ $2.676(7) - 10^{\circ}$	1.35	$\delta \mathrm{NLO}_{22}$	$\alpha_s^2 \alpha^2$	$-1.09511(9) \cdot 10^{1}$	$-1.0947(3) \cdot 10^{-1}$	1 1.13 /
$e e \rightarrow j j j j$	105.0(3)	104.2(4)	$pp \rightarrow Zjj$ $pp \rightarrow Zjij$	$2.364(5) \cdot 10^{9}$ 6.381(23) $\cdot 10^{5}$	$2.076(7) \cdot 10^{5}$ 6.85(3) $\cdot 10^{5}$	1.13	$\delta \mathrm{NLO}_{13}$	$\alpha_s \alpha^3$	$2.93251(3) \cdot 10^{1}$	$2.9334(8) \cdot 10^{1}$	1.14 /
$ e^+e^- \rightarrow jjjjj$	22.33(5)	24.57(7)	$pp \rightarrow \Sigma JJJ$	7.259(10) 104	10.069(11) 10	4 1 40	$\delta \mathrm{NLO}_{04}$	$lpha^4$	$5.759(3) \cdot 10^{-2}$	$5.756(4) \cdot 10^{-2}$	0.58 /
$e^+e^- \rightarrow iiiii$	5i = 3583(17)	$4.46(\dot{A})$	$pp \rightarrow W^+W^-(4f)$ $pp \rightarrow W^+W^-i(4f)$	$2.853(7) \cdot 10^4$	$3.733(7) \cdot 10^4$	1.40					, , , , , , , , , , , , , , , , , , ,
	J 0.000(11)	4.40(4)	$pp \rightarrow W^+W^-jj(4f)$ *	$1.150(5) \cdot 10^4$	$1.372(6) \cdot 10^4$	1.19					
$e^+e^- \rightarrow t\bar{t}$	166.37(12)	174.55(20)	$pp \rightarrow W^+W^+jj$ *	$1.506(5) \cdot 10^2$	$2.235(7) \cdot 10^2$	1.48					
$e^+e^- \rightarrow t\bar{t}i$	48 12(5)	53.41(7)	$pp \rightarrow W^-W^-jj$	$6.772(24) \cdot 10^{4}$	$9.982(28) \cdot 10^{4}$	1.47			$= \bigvee \qquad \mu^+ \mu^- \to X, \sqrt{s} =$	$= \sigma_{\rm LO}^{\rm incl}$ [fb]	$\sigma_{\rm NLO}^{\rm incl}$ [fb]
$e^+e^- \rightarrow t\bar{t}ii$	40.12(0) 8 502(10)	10.526(21)	$pp \rightarrow ZW^{\perp}$ $pp \rightarrow ZW^{\pm}i$	$2.780(5) \cdot 10^{4}$ $1.609(4) \cdot 10^{4}$	$4.488(4) \cdot 10^{-2}$ 2.0940(28) $\cdot 10^{-2}$	4 1.30				LOIJ	NLO I J
$e^+e^- \rightarrow t\bar{t}jj$	1.035(4)	1.05(5)	$pp \rightarrow ZW^{\pm}jj$	$8.06(3) \cdot 10^3$	$9.02(4) \cdot 10^3$	1.12				$4.6591(2) \cdot 10^2$	$4.847(7) \cdot 10^2$
$e^+e^- \rightarrow t\bar{t}f\bar{f}$	1.035(4) 0.6388(8) . 10 ⁻³	1.403(3) 1.1022(11).10-3	$pp \rightarrow ZZ$ *	$1.0969(10) \cdot 10^4$	$1.4183(11) \cdot 10$	4 1.29			ZZ	$2.5988(1) \cdot 10^{1}$	$2.656(2) \cdot 10^1$
$e^+e^- \rightarrow t\bar{t}t\bar{t}$	$0.0388(8) \cdot 10$ $0.672(7) \cdot 10^{-5}$	$1.1922(11) \cdot 10^{-5}$	$pp \rightarrow ZZj$	$3.667(9) \cdot 10^3$	$4.807(8) \cdot 10^{3}$	1.31			HZ	$1.3719(1) \cdot 10^{0}$	$1.3512(5) \cdot 10^{0}$
$e^+e^- \rightarrow i i i i j$	$2.075(7) \cdot 10$	$5.251(11) \cdot 10$	$pp \rightarrow ZZjj$ *	$1.356(6) \cdot 10^{5}$	$1.684(8) \cdot 10^{-3}$	1.24			HH	$1.60216(7) \cdot 10^{-7}$	$5.66(1) \cdot 10^{-7}$ *
$e^+e^- \rightarrow t\bar{t}H$	2.020(3)	1.912(3)							W^+W^-Z	$3.330(2) \cdot 10^{1}$	$2.568(8) \cdot 10^{1}$
$e^+e^- \rightarrow t\bar{t}Hj$	$2.536(4) \cdot 10^{-1}$	$2.657(4) \cdot 10^{-1}$							W^+W^-H	$1.1253(5) \cdot 10^{0}$	$0.895(2)\cdot10^{0}$
$e^+e^- \rightarrow t\bar{t}Hjj$	$2.646(8) \cdot 10^{-2}$	$3.123(9) \cdot 10^{-2}$					1		ZZZ	$3.598(2) \cdot 10^{-1}$	$2.68(1) \cdot 10^{-1}$
$e^+e^- \rightarrow t\bar{t}Z$	4.638(3)	4.937(3)	ee @ .25 Te	eV, NLO E	W. pol.av.	+ pol.			HZZ	$8.199(4) \cdot 10^{-2}$	$6.60(3) \cdot 10^{-2}$
$e^+e^- \rightarrow t\bar{t}Zj$	$6.027(9) \cdot 10^{-1}$	$6.921(11) \cdot 10^{-1}$,			1			$3.277(1) \cdot 10^{-2}$	$2.451(5) \cdot 10^{-2}$
$e^+e^- \rightarrow t\bar{t}Zjj$	$6.436(21) \cdot 10^{-2}$	$8.241(29) \cdot 10^{-2}$							$\frac{HHH}{W^+W^-W^+W^-}$	$2.9699(6) \cdot 10^{-0}$	$\frac{0.86(7) \cdot 10^{-0.4}}{0.002(6)}$
$e^+e^- \rightarrow t\bar{t}W^{\pm}jj$	$2.387(8) \cdot 10^{-4}$	$3.716(10) \cdot 10^{-4}$	I		I		1		W + W = Z Z	$1.484(1) \cdot 10^{\circ}$ 1 200(1) . 10 ⁰	$0.993(6) \cdot 10^{\circ}$ 0.600(7) · 10 ⁰
$e^+e^- \rightarrow t\bar{t}HZ$	$3.623(19) \cdot 10^{-2}$	$3.584(19) \cdot 10^{-2}$	MCSA	ANCee[37]	WHI	ZARD+RE	ECOLA		W W ZZ W^+W^-HZ	$\begin{bmatrix} 1.209(1) \cdot 10 \\ 8.754(8) \cdot 10^{-2} \end{bmatrix}$	$6.05(4) \cdot 10^{-2}$
$e^+e^- \rightarrow t\bar{t}ZZ$	$3.788(6) \cdot 10^{-2}$	$4.032(7) \cdot 10^{-2}$	\sqrt{s} [GeV] $\sigma_{ m LO}^{ m tot}$ [fb	$\sigma_{ m NLO}^{ m tot}~[{ m fb}]$	$\sigma_{ m LO}^{ m tot}~[{ m fb}]$	$\sigma_{ m NLO}^{ m tot}$ [$[\mathrm{fb}] \mid \delta_{\mathrm{EW}} [\%] \mid \delta_{\mathrm{EW}}$	$\sigma^{\rm sig} ({\rm LO/NL})$	\underline{O}) W^+W^-HH	$1.058(1) \cdot 10^{-2}$	$0.655(5) \cdot 10^{-2}$
$e^+e^- \rightarrow t\bar{t}HH$	$1.3650(15) \cdot 10^{-2}$	$1.2168(16) \cdot 10^{-2}$	250 $225.59(1$) $206.77(1)$	225.60(1)	207.0	(1) -8.25	0.4/2.1	ZZZZ	$3.114(2) \cdot 10^{-3}$	$1.799(7) \cdot 10^{-3}$
$e^+e^- \rightarrow t\bar{t}W^+W^-$	$1.3672(21) \cdot 10^{-1}$	$1.5385(22) \cdot 10^{-1}$	500 $53.74(1$) 62.42(1)	53.74(3)	62.41	(2) +16.14	0.2/0.3	HZZZ	$2.693(2) \cdot 10^{-3}$	$1.766(6) \cdot 10^{-3}$
			1000 12.05(1) $14.56(1)$	12.0549(6)	14.57	(1) +20.84	0.5/0.5	HHZZ	9.828(7) $\cdot 10^{-4}$	$6.24(2) \cdot 10^{-4}$
								,	HHHZ	$1.568(1) \cdot 10^{-4}$	$1.165(4) \cdot 10^{-4}$

J. R. Reuter, DESY

pp @ 13 TeV, NLO QCD/EW mixed

LCWS 2024, U. of Tokyo, 10.7.2024

7 / 21

 $\delta_{
m EW} ~ [\%]$

-22.9(2)-20.5(2)-25.5(3)-19.6(3)-25.2(1)

-33.1(4)-42.2(6)-30.9(5)-38.1(4)-42.2(2)-34.4(2)-36.5(2)-25.7(2)

Differential NLO fixed-order distributions

ee @ I TeV, NLO QCD

J. R. Reuter, DESY

pp @ 13 TeV, NLO QCD

μμ @ 10 TeV, NLO EW

arXiv: 2208.09438

NLO POWHEG-type matching

Matching NLO real emission from hard ME and parton shower (PS)

- POWHEG method: hardest emission first [Frixione/Nason et al.]
- Process-independent NLO matching in WHIZARD

LHC 13 TeV: NC Drell-Yan $pp \rightarrow \ell^+ \ell^-$ compared to CMS data

J. R. Reuter, DESY

LCWS 2024, U. of Tokyo, 10.7.2024

NLO POWHEG-type matching

Matching NLO real emission from hard ME and parton shower (PS)

- **POWHEG method:** hardest emission first [Frixione/Nason et al.]
- Process-independent NLO matching in WHIZARD

LHC 13 TeV: NC Drell-Yan $pp \rightarrow \ell^+ \ell^-$ compared to CMS data

J. R. Reuter, DESY

9 / 21

- Parallelization of integration: OMP multi-threading for different helicities
- MPI parallelization (using OpenMPI or MPICH) Ş
- Ş Distributes workers over multiple cores, grid adaption needs non-trivial communication
- Ş Speedups of 20 to 50, saturation at O(100) tasks [can do also parallel event generation]
- Load balancer / non-blocking communication [v3.0.0] Ş

J. R. Reuter, DESY

Whizard on GPUs

GPU

CPU Optimised for Serial Tasks

÷

- Ş Joint project with former Phd student; now works for NEC supercomputers
- Main core serial (or MPI-parallel) on CPU,
- Ş 1. step: matrix elements as libraries off-loaded to GPU
- Ş (Semi-) automatized ME generator exists for amplitudes on GPU
- Ş Moderate speed-ups can be seen for more complicated processes
- Ş
- \Im W.i.p.: phase-space adaption on the GPU (w/ minimal data transfer CPU \leftrightarrow GPU)

J. R. Reuter, DESY

2. step: phase-space generation (SIMD paradigm) on the GPU

LCWS 2024, U. of Tokyo, 10.7.2024

Whizard on GPUs

GPU

Preliminary:

Optimised for M Parallel Tasks	any

- Ş Joint project with former Phd student; now works for NEC supercomputers Ş
- Main core serial (or MPI-parallel) on CPU,
- Ş 1. step: matrix elements as libraries off-loaded to GPU
- Ş (Semi-) automatized ME generator exists for amplitudes on GPU
- Ş Moderate speed-ups can be seen for more complicated processes
- Ş
- \Im W.i.p.: phase-space adaption on the GPU (w/ minimal data transfer CPU \leftrightarrow GPU)

Process	$t^{CPU}[s]$	$t^{GPU}[s]$
$e^+e^- \rightarrow t\bar{t}$	0.98	4.28
$e^+e^- \rightarrow bW^+\bar{b}W^-$	28.8	23.1
$e^+e^- ightarrow bW^+ \bar{b}W^- H$	57.5	37.8
$ e^+e^- \rightarrow b\bar{b}\bar{\nu}_e e^-\bar{\nu}_\mu\mu^+$	154	124
$e^+e^- \rightarrow 2j$	1.9	5.4
$e^+e^- ightarrow 3j$	45	65
$e^+e^- \rightarrow 4j$	870	608
$e^+e^- ightarrow 5j$	4106	978
$pp \rightarrow jj$	42	86
$pp \rightarrow W^+W^-W^+W^-$	670	192

J. R. Reuter, DESY

2. step: phase-space generation (SIMD paradigm) on the GPU

LCWS 2024, U. of Tokyo, 10.7.2024

Whizard on GPUs

GPU

Optimised for Many

Parallel Tasks

Preliminary:		
Process	$t^{CPU}[s]$	$t^{GPU}[s]$
$e^+e^- \rightarrow t\bar{t}$	0.98	4.28
$e^+e^- ightarrow bW^+ \overline{b}W^-$	28.8	23.1
$e^+e^- ightarrow bW^+ ar b W^- H$	57.5	37.8
$e^+e^- ightarrow b \bar{b} \bar{\nu}_e e^- \bar{\nu}_\mu \mu^+$	154	124
$e^+e^- \rightarrow 2j$	1.9	5.4
$e^+e^- ightarrow 3j$	45	65
$e^+e^- \rightarrow 4j$	870	608
$e^+e^- ightarrow 5j$	4106	978
$pp \rightarrow jj$	42	86
$pp \rightarrow W^+W^-W^+W^-$	670	192

÷

- Joint project with former Phd student; now works for NEC supercomputers Ş
- Main core serial (or MPI-parallel) on CPU,
- Ş 1. step: matrix elements as libraries off-loaded to GPU
- Ş (Semi-) automatized ME generator exists for amplitudes on GPU
- Ş Moderate speed-ups can be seen for more complicated processes
- Ş
- Ş W.i.p.: phase-space adaption on the GPU (w/ minimal data transfer CPU \leftrightarrow GPU)

Whizard MC Integrators:

- VAMP:
- VAMP2: fully MPI-parallelized version, using RNG stream generator - [VGPU: VAMP implementation on GPU] - [VXInt: new adaptive generator + integrator based on INNs] - (w.i.p first as a stand-alone tool)

J. R. Reuter, DESY

2. step: phase-space generation (SIMD paradigm) on the GPU

adaptive multi-channel Monte Carlo integrator

LCWS 2024, U. of Tokyo, 10.7.2024

News on the UFO / BSM in WHIZARD

model = SM(ufo) model = SM (ufo ("<my UFO path>"))

- WHIZARD 2.8.3: Full UFO (1) support
- Fermion-number violating interactions (3.0.0)
- (N)LO matrix elements from UFO models (particularly SMEFTSim v3.x)
- Arbitrary Lorentz structures supported
- 5-, 6-, 7-, 8-, ... point vertices (optimization for code generation pending)
- \mathbf{M} Customized propators; Spin 0, 1/2, 1, 3/2, 2; BSM SLHA input (2.8.3,3.2.x)
- Lots of bug reports and constructive feedback from many different users

New paper on UFO 2.0: Darmé et al. arXiv: 2304.09883

J. R. Reuter, DESY

I. Bozović-Jelizavčić, 2405.05820

LCWS 2024, U. of Tokyo, 10.7.2024

New features, ongoing development

J. R. Reuter, DESY

BSM @ NLO (QCD) with UFO

- GoSam was the first OLP that kicked off NLO automation in Whizard in 2013
- Revived 2023 with NLO QCD for BSM models (e.g. SMEFT) for LHC J. Braun/P. Bredt/G. Heinrich/M. Höfer/JRR
- End of 2023: full validation of NLO QCD processes for LHC within SM: $pp \rightarrow t\bar{t}, pp \rightarrow t\bar{t}H, pp \rightarrow \gamma\gamma, pp \rightarrow \gamma j \dots$
- GoSam UFO NLO interface allows support for almost any model
- ᠃ W.i.p.: Note yet supported neither by the public Whizard nor GoSam versions
- Implementation and validation of resonance-aware subtraction for pp processes in Whizard
- 2024: First test runs for NLO QCD corrections for UFO BSM models

· · · · · · · · · · · · · · · · · · ·	GoSam An Automated One-Loop Matrix Element Generator Version 2.1.0 Rev: 93fd8c5
(1	c) The GoSam Collaboration 2011-2021
AUTHORS: * Gudrun Heinrich * Stephen Jones * Matthias Kerner * Vitaly Magerya * Pierpaolo Mastrolia * Giovanni Ossola * Tiziano Peraro * Johannes Schlenk * Francesco Tramontano	<pre><gudrun@mpp.mpg.de> <s.jones@cern.ch> <mkerner@physik.uzh.ch> <vitaly.magerya@tx97.net> <pierpaolo.mastrolia@cern.ch> <gossola@citytech.cuny.edu> <peraro@mpp.mpg.de> <johannes.schlenk@psi.ch> <francesco.tramontano@cern.ch></francesco.tramontano@cern.ch></johannes.schlenk@psi.ch></peraro@mpp.mpg.de></gossola@citytech.cuny.edu></pierpaolo.mastrolia@cern.ch></vitaly.magerya@tx97.net></mkerner@physik.uzh.ch></s.jones@cern.ch></gudrun@mpp.mpg.de></pre>
FORMER AUTHORS: * Gavin Cullen * Hans van Deurzen * Nicolas Greiner * Stephan Jahn * Gionata Luisoni * Edoardo Mirabella * Joscha Reichel * Thomas Reiter * Johann Felix von Sodo	<pre><gavin.cullen@desy.de> <hdeurzen@mpp.mpg.de> <greiner@mpp.mpg.de> <sjahn@mpp.mpg.de> <luisonig@mpp.mpg.de> <mirabell@mpp.mpg.de> <joscha@mpp.mpg.de> <reiterth@mpp.mpg.de> en-Fraunhofen <jfsoden@mpp.mpg.de></jfsoden@mpp.mpg.de></reiterth@mpp.mpg.de></joscha@mpp.mpg.de></mirabell@mpp.mpg.de></luisonig@mpp.mpg.de></sjahn@mpp.mpg.de></greiner@mpp.mpg.de></hdeurzen@mpp.mpg.de></gavin.cullen@desy.de></pre>
This program is free software: yo it under the terms of the GNU Ge version 3, or (at your option) a	ou can redistribute it and/or modify neral Public License either ny later version.
Scientific publications prepared GoSam or any modified version of or parts of it should make a clea	using the present version of it or any code linking to GoSam ar reference to the publication:
G. Cullen et al., ``GoSam-2.0: a tool for autor within the Eur. Phys. J. C 74 (2014) 8, [arXiv:1404.7096 [hep-ph]].	mated one-loop calculations Standard Model and Beyond'', 3001

i	WHIZARD 3.1.4.1
	Reading model file '/home/reuter/local/share/wh
	Preloaded model: SM Process library 'default_lib': initialized
1	Preloaded library: default_lib Reading model file '/home/reuter/local/share/wh
i	Reading commands from file 'gg_ttH_r.sin'
1	Model: Generating model Sh_with_ggh_0r0 from Model: Searching for UFO sources in '/home/reut
0	FO/Minimal_example' Model: Found UFO sources for model 'SM_with_ggh
	Model: Model file 'SM_with_ggh_UFO.ufo.mdl' ger Reading model file 'SM with ggh UFO.ufo.mdl'
İ	Switching to model 'SM_with_ggh_UFO' (generated M_with_ggh_UFO_MB => _0_000000000000000000000000000000000
S	M_with_ggh_UF0.MT => 1.72500000000E+02
s S	M_with_ggh_UF0.MH => 1.25000000000E+02
S S	M_with_ggh_UF0.WH => 0.000000000000E+00 M_with_ggh_UF0.Lambda => 1.00000000000E+03
S	M_with_ggh_UF0.CphiG => 0.00000000000E+00

J. R. Reuter, DESY

=======================================
hizard/models/SM.mdl'
hizard/models/SM_hadrons
UFO sources
ter/local/packages/whiza
h_UF0'
nerated
d from UFO source)

Process Libra	s [scat ary name	tering]: e = 'de	'nlo_tt' fault_lib'					
Proce	ess ind	ex = 1						
Proce	ess com	ponents:		* * * * * *	[]			
1:	'nlo_t	t_11': + + + 2''	e+, e- =>	t, tbar	[omega]	a 2 1 1	r0.11	
2.	'nlo_t	L_12 . + i3''	e+, e- =>	t, thar	gr [ollea	gaj, [[virt	uall	
Δ·	'nlo_t	t_15.	e+ e- =>	t thar	[gusam], [inactiv	e] [s	ubtract	ionl
		·_···						
	1	8192	8.813E+01	9.34E-03	0.01	0.01	45.0	
	2	8192	8.812E+01	8.16E-03	0.01	0.01	76.9	
	2	16384	8.813E+01	6.15E-03	0.01	0.01	76.9	0.88
	====== Integ	======== rate: sum	of all compon	======================================				
	======	============	==================			======	========	
	It	Calls	Integral[fb]	Error[fb]	Err[%]	Acc	Eff[%]	Chi2 N[
	1	 Θ	5.599E+02	1.30E-01	0.02	0.00	66.9	
	NLO C	orrection:	[O(alpha_s+1	.)/O(alpha_9	5)]			
	(2.75 +-	0.02) %					
	======= There	======================================	rrors and	2 warning(s	========= 5).			
	WHIZA	RD run fin	ished.					
	======							

- Recent work allows to generate completely arbitrary SU(N)
- Implementation of birdtrack algorithm: allows for generic Lie groups
- Based on color-flow implementation in Whizard
- Very important for dim-6, dim-8, ... operators in SMEFT for e.g. Dark Sector/Dark Matter models
- Matrix element generator fully capable of completely general color exotics
- W.i.p.: support to handle this on the event generation
- Benefits for free: epsilon structures (e.g. RPV SUSY), sextets, decuplets etc.
- Comes with automated Clebsch-Gordan decomposition
- Some example vertices:

J. R. Reuter, DESY

T. Ohl, JHEP 06 (2024) 203

- Recent work allows to generate completely arbitrary SU(N)
- Implementation of birdtrack algorithm: allows for generic Lie groups
- Based on color-flow implementation in Whizard
- Very important for dim-6, dim-8, ... operators in SMEFT for e.g. Dark Sector/Dark Matter models
- Matrix element generator fully capable of completely general color exotics
- W.i.p.: support to handle this on the event generation
- Benefits for free: epsilon structures (e.g. RPV SUSY), sextets, decuplets etc.
- Comes with automated Clebsch-Gordan decomposition
- Some example vertices:

J. R. Reuter, DESY

T. Ohl, JHEP 06 (2024) 203

 $\frac{1}{2} \stackrel{1}{\longrightarrow} \frac{1}{2} = \sum_{\sigma \in S} \frac{1}{n!} \cdot \frac{1}{2} \stackrel{\bullet}{\longrightarrow} \frac{\sigma(1)}{\sigma(2)}$ $\begin{array}{c}
1 & \longrightarrow & 1\\
2 & \longrightarrow & 2\\
n & \longrightarrow & n
\end{array} = \sum_{\sigma \in S} \frac{(-)^{\epsilon(\sigma)}}{n!} \cdot \begin{array}{c}
1 & \longleftarrow & \sigma(1)\\
2 & \longleftarrow & \sigma(2)\\
n & \longleftarrow & \sigma(n)
\end{array}$ $j_1 \, j_2 \, j_3 \, j_4$ 15' $j_1 \, j_2 \, j_3 \, j_4 \, j_5$ $\mathbf{21}$ $rac{j_4}{j_5}rac{j_1}{j_2}rac{j_3}{j_3}$ $\mathbf{24}$ $egin{array}{c|c} j_2 & j_5 & j_3 & j_4 \ j_1 & j_6 \end{array}$ $\mathbf{27}$

J. R. Reuter, DESY

- Recent work allows to generate completely arbitrary SU(N)
- Implementation of birdtrack algorithm: allows for generic Lie groups
- Based on color-flow implementation in Whizard
- Very important for dim-6, dim-8, ... operators in SMEFT for e.g. Dark Sector/Dark Matter models
- Matrix element generator fully capable of completely general color exotics
- W.i.p.: support to handle this on the event generation
- Benefits for free: epsilon structures (e.g. RPV SUSY), sextets, decuplets etc.
- Comes with automated Clebsch-Gordan decomposition
- Some example vertices:

J. R. Reuter, DESY

T. Ohl, JHEP 06 (2024) 203

	n_ϵ	n_\uparrow	r_3	remarks
$3\otimes3\otimes6\otimes\overline{6}\otimes\overline{6}$	0	4	4	
$3\otimes\overline{3}\otimes6\otimes\overline{6}\otimes8$	0	4	5	but $r_2 = 4$
${f 6}\otimes{f 6}\otimes{f \overline 6}\otimes{f \overline 6}\otimes{f 8}$	0	5	8	but $r_2 = 6$
$3\otimes3\otimes3\otimes\overline{3}\otimes\overline{6}$	1	0	3	
$3\otimes3\otimes3\otimes3\otimes3\otimes6$	2	0	2	
$3\otimes 6\otimes \overline{6}\otimes \overline{6}\otimes \overline{6}$	2	0	3	
$3\otimes\overline{3}\otimes6\otimes6\otimes6$	2	1	3	
${f 6}\otimes{f 6}\otimes{f 6}\otimes{f 8}\otimes{f 8}$	2	2	10	4 anti-, 6 syr
$3\otimes6\otimes6\otimes6\otimes6$	3	0	3	
$6\otimes\overline{6}\otimes\overline{6}\otimes\overline{6}\otimes\overline{6}$	3	0	6	

LCWS 2024, U. of Tokyo, 10.7.2024

Quick note on the top threshold

180

Chokoufé/Hoang/Kilian/JRR/Stahlhofen/Teubner/Weiss, 1712.02220

- Exclusive Top threshold NLL-NLO QCD matched available
- Implemented for v2.5.1, revalidated in v3.0 parallelized
- Recent improvement in axial form factor matching
- New development line for upcoming versions
- Also work for top threshold handling in pp collisions!

J. R. Reuter, DESY

Further work on QED: ePDFs, EW PDFs, QED shower

- **Collinear resummation LO/LL**
- NLO QED PDFs, collinear evolution @ NLL
- functional for Born processes
- \Box Crucial: numerical stability at kinematically peaked limit $z \rightarrow 1$
- \Box Final infrastructure done, mapping for real radiation component (\Rightarrow no plots yet \bowtie)

$$d\sigma_{kl}(p_k, p_l) = \sum_{ij=e^+, e^-, \gamma} \int dz_+ dz_- \Gamma_{i/k}(z_+, \mu^2, m^2) \Gamma_{j/l}(z_-, \mu^2, m^2) \\ \times d\hat{\sigma}_{ij}(z_+ p_k, z_- p_l, \mu^2) + \mathcal{O}\left(\left(\frac{m^2}{s}\right)^p\right)$$

J. R. Reuter, DESY

Gribov/Lipatov, 1972; Kuraev/Fadin, 1985; Skrzypek/Jadach, 1992; Cacciari/Deandrea/Montagna/Nicrosini, 1992 Frixione, 1909.0388; Bertone/Cacciari/Frixione/Stagnitto, 1911.12040 + 2207.03265 Status in WHIZARD: LO+LL ePDFs fully functional, NLO+NLL ePDFs implemented (incl. NLO QED evol.), validated,

$$\begin{split} \mathbb{P}_{\mathrm{S}} &= \begin{pmatrix} P_{\Sigma\Sigma} \ P_{\Sigma\gamma} \\ P_{\gamma\Sigma} \ P_{\gamma\gamma} \end{pmatrix}, \\ P_{\mathrm{NS}} &= P_{e^{\pm}e^{\pm}} - P_{e^{\pm}e^{\mp}} \equiv P_{ee}^{\mathrm{V}} - P_{e\bar{e}}^{\mathrm{V}} \end{split}$$

ePDFs for polarized leptons !?

P. Bredt/T. Striegl, 2024

Electron PDFs: some details

- Rewriting of analytic expressions in redundant variables x,
- I. step: numerically stable logs and polylogs
- 2. step: solve integrals for which only numerical solutions
- NLL ePDF is in form to allow for exponential mappings
- Quadruple precision only for critical points

$$\begin{split} \bar{x} \equiv 1 - x \\ \hat{x}_{n,n,n}^{\text{run}} &= \frac{1}{108b_0 z (z^2 - 1)} \times \left(608b_0 N_r^2 z^3 + 192b_0 L_0 N_r^2 z^5 - 432b_0 N_r x^2 z^5 - 960b_0^2 N_r x^2 z^5 -$$

P. Bredt/T. Striegl, 2024

* Full NLL electron PDFs:

Electron PDFs: some details

- $\overset{\$}{=}$ Rewriting of analytic expressions in redundant variables x
- I. step: numerically stable logs and polylogs
- 2. step: solve integrals for which only numerical solutions
- NLL ePDF is in form to allow for exponential mappings
- Quadruple precision only for critical points

*	Q =	1.0000	0E+00 G	eV, NLL,	alpha	fixed	1:						
	ePDF	(x =	1.0	000000000	900000	E-44,	S/NS/ELE/	POS/GAM) =	1.131183E+	42 1	L.290173E+06	5.655916E+41	5.655916E
	ePDF	(x =	1.0	000000000	900000	E-44,	e [S +	-NS]/2) = 0	0.00000000				
	ePDF	(x =	1.0	000000000	900000	E-44,	e+ - [S -	$NS_{1}/2) = 0$	0.00000000				
	ePDF	(x =	1.0	000000000	900000	E-43,	S/NS/ELE/	(POS/GAM) =	1.106221E+	41 7	7.885546E+04	5.531106E+40	5.531106E
	ePDF	(x =	1.0	000000000	900000	E-43,	e [S +	-NS]/2) = (0.00000000				
	ePDF	(x =	1.0	0000000000	900000	E-43,	e+ - [S -	(NS]/2) = (9.00000000				
	ePDF	(x =	1.0	0000000000	900000	E-42,	S/NS/ELE/	POS/GAM) =	1.081259E+	40 - 8	3.861889E+03	5.406296E+39	5.406296E
	ePDF	(x =	1.0	0000000000	900000	E-42,	e [S +	-NS]/2) = 0	0.00000000				
	ePDF	(x =	1.0	0000000000	900000	E-42,	e+ - [S -	(NS]/2) = (0.00000000				
	ePDF	(x =	1.0	0000000000	900000	E-41,	S/NS/ELE/	POS/GAM) =	1.056297E+	39 1	L.200275E+03	5.281486E+38	5.281486E
	ePDF	(x =	1.0	0000000000	900000	E-41,	e [S +	-NS]/2) = 0	0.00000000				
	ePDF	(x =	1.0	0000000000	900000	E-41,	e+ - [S -	(NS]/2) = (0.00000000				
	ePDF	(x =	1.0	0000000000	900000	E-40,	S/NS/ELE/	POS/GAM) =	1.031335E+	38 2	2.082260E+02	5.156676E+37	5.156676E
	ePDF	(x =	1.0	0000000000	900000	E-40,	e [S +	-NS]/2) = 0	9.00000000				
	ePDF	(x =	1.0	0000000000	900000	E-40,	e+ - [S -	$\cdot NS]/2) = ($	9.00000000				
	ePDF	(x =	1.0	0000000000	900000	E-39,	S/NS/ELE/	POS/GAM) =	1.006373E+	37 1	L.717684E+01	5.031866E+36	5.031866E
	ePDF	(x =	1.0	0000000000	900000	E-39,	e [S +	-NS]/2) = (9.00000000				
	ePDF	(x =	1.0	0000000000	900000	E-39,	e+ - [S -	$\cdot NS]/2) = ($	9.00000000				
	ePDF	(x =	1.0	0000000000	900000	E-38,	S/NS/ELE/	POS/GAM) =	9.814112E+	35 7	7.520304E-01	4.907056E+35	4.907056E
	ePDF	(x =	1.0	0000000000	900000	E-38,	e [S +	-NS]/2) = (0.00000000				
	ePDF	(x =	1.0	000000000	900000	E-38,	e+ - [S -	-NS]/2) = (0.00000000				
	ePDF	(x =	1.0	0000000000	900000	E-37,	S/NS/ELE/	POS/GAM) =	9.564492E+	34 -4	l.189107E-01	4.782246E+34	4.782246E
	ePDF	(x =	1.0	0000000000	900000	E-37,	e [S +	-NS]/2) = 0	0.00000000				
	ePDF	(x =	1.0	0000000000	900000	E-37,	e+ - [S -	-NS]/2) = (0.00000000				
	ePDF	(x =	1.0	0000000000	900000	E-36,	S/NS/ELE/	(POS/GAM) =	9.314872E+	33 - 2	2.591904E-01	4.657436E+33	4.657436E
	ePDF	(x =	1.0	000000000	900000	E-36,	e [S +	-NS]/2) = (0.50000000				
	ePDF	(x =	1.0	000000000	900000	E-36,	e+ - [S -	(NS]/2) = (0.50000000				
	ePDF	(x =	1.0	000000000	900000	E-35,	S/NS/ELE/	(POS/GAM) =	9.065252E+	32 - 2	2.549587E-01	4.532626E+32	4.532626E
	ePDF	(x =	1.0	0000000000	9000001	E-35,	e [S +	-NS]/2) = (9.00000000				
	ePDF	(x =	1.0	0000000000	9000001	E-35,	e+ - [S -	(NS]/2) = (9.00000000				
	ePDF	(x =	1.0	000000000	9000001	E-34,	S/NS/ELE/	(POS/GAM) =	8.815632E+	31 -2	2.321432E-01	4.407816E+31	4.407816E
	ePDF	(x =	1.0	0000000000	900000	E-34,	e [5 +	+ NS]/2) = (9.01562500				
	ePDF	(x =	1.0	0000000000	900000	E-34,	e+ - [S -	(NS]/2) = (9.0000000				
	ePDF	(x =	1.0	000000000000000000000000000000000000000	900000	E-33,	S/NS/ELE/	POS/GAM) =	8.566012E+	30 -2	2.133651E-01	4.283006E+30	4.283006E

P. Bredt/T. Striegl, 2024

* Full NLL electron PDFs:

Electron PDFs: some details

- Ş Rewriting of analytic expressions in redundant variables $x, \bar{x} \equiv 1 - x$
- Ş 1. step: numerically stable logs and polylogs
- Ş 2. step: solve integrals for which only numerical solutions existed
- ĕ NLL ePDF is in form to allow for exponential mappings
- Quadruple precision only for critical points

*	Q =	1.0000	0E+00 G	eV, NLL,	alpha	fixed	1:						
	ePDF	(x =	1.0	000000000	900000	E-44,	S/NS/ELE/	POS/GAM) =	1.131183E+	42 1	L.290173E+06	5.655916E+41	5.655916E
	ePDF	(x =	1.0	000000000	900000	E-44,	e [S +	-NS]/2) = 0	0.00000000				
	ePDF	(x =	1.0	000000000	900000	E-44,	e+ - [S -	$NS_{1}/2) = 0$	0.00000000				
	ePDF	(x =	1.0	000000000	900000	E-43,	S/NS/ELE/	(POS/GAM) =	1.106221E+	41 7	7.885546E+04	5.531106E+40	5.531106E
	ePDF	(x =	1.0	0000000000	900000	E-43,	e [S +	-NS]/2) = (0.00000000				
	ePDF	(x =	1.0	0000000000	900000	E-43,	e+ - [S -	(NS]/2) = (9.00000000				
	ePDF	(x =	1.0	0000000000	900000	E-42,	S/NS/ELE/	POS/GAM) =	1.081259E+	40 - 8	3.861889E+03	5.406296E+39	5.406296E
	ePDF	(x =	1.0	0000000000	900000	E-42,	e [S +	-NS]/2) = 0	0.00000000				
	ePDF	(x =	1.0	0000000000	900000	E-42,	e+ - [S -	(NS]/2) = (0.00000000				
	ePDF	(x =	1.0	0000000000	900000	E-41,	S/NS/ELE/	POS/GAM) =	1.056297E+	39 1	L.200275E+03	5.281486E+38	5.281486E
	ePDF	(x =	1.0	0000000000	900000	E-41,	e [S +	-NS]/2) = 0	0.00000000				
	ePDF	(x =	1.0	0000000000	900000	E-41,	e+ - [S -	(NS]/2) = (0.00000000				
	ePDF	(x =	1.0	0000000000	900000	E-40,	S/NS/ELE/	POS/GAM) =	1.031335E+	38 2	2.082260E+02	5.156676E+37	5.156676E
	ePDF	(x =	1.0	0000000000	900000	E-40,	e [S +	-NS]/2) = 0	9.00000000				
	ePDF	(x =	1.0	0000000000	900000	E-40,	e+ - [S -	$\cdot NS]/2) = ($	9.00000000				
	ePDF	(x =	1.0	0000000000	900000	E-39,	S/NS/ELE/	POS/GAM) =	1.006373E+	37 1	L.717684E+01	5.031866E+36	5.031866E
	ePDF	(x =	1.0	0000000000	900000	E-39,	e [S +	-NS]/2) = (9.00000000				
	ePDF	(x =	1.0	0000000000	900000	E-39,	e+ - [S -	$\cdot NS]/2) = ($	9.00000000				
	ePDF	(x =	1.0	0000000000	900000	E-38,	S/NS/ELE/	POS/GAM) =	9.814112E+	35 7	7.520304E-01	4.907056E+35	4.907056E
	ePDF	(x =	1.0	0000000000	900000	E-38,	e [S +	-NS]/2) = (0.00000000				
	ePDF	(x =	1.0	000000000	900000	E-38,	e+ - [S -	-NS]/2) = (0.00000000				
	ePDF	(x =	1.0	0000000000	900000	E-37,	S/NS/ELE/	POS/GAM) =	9.564492E+	34 -4	l.189107E-01	4.782246E+34	4.782246E
	ePDF	(x =	1.0	0000000000	900000	E-37,	e [S +	-NS]/2) = 0	0.00000000				
	ePDF	(x =	1.0	0000000000	900000	E-37,	e+ - [S -	-NS]/2) = (0.00000000				
	ePDF	(x =	1.0	0000000000	900000	E-36,	S/NS/ELE/	(POS/GAM) =	9.314872E+	33 - 2	2.591904E-01	4.657436E+33	4.657436E
	ePDF	(x =	1.0	000000000	900000	E-36,	e [S +	-NS]/2) = (0.50000000				
	ePDF	(x =	1.0	000000000	900000	E-36,	e+ - [S -	(NS]/2) = (0.50000000				
	ePDF	(x =	1.0	000000000	900000	E-35,	S/NS/ELE/	(POS/GAM) =	9.065252E+	32 - 2	2.549587E-01	4.532626E+32	4.532626E
	ePDF	(x =	1.0	0000000000	9000001	E-35,	e [S +	-NS]/2) = (9.00000000				
	ePDF	(x =	1.0	0000000000	9000001	E-35,	e+ - [S -	(NS]/2) = (9.00000000				
	ePDF	(x =	1.0	000000000	9000001	E-34,	S/NS/ELE/	(POS/GAM) =	8.815632E+	31 -2	2.321432E-01	4.407816E+31	4.407816E
	ePDF	(x =	1.0	0000000000	900000	E-34,	e [5 +	+ NS]/2) = (9.01562500				
	ePDF	(x =	1.0	0000000000	900000	E-34,	e+ - [S -	(NS]/2) = (9.0000000				
	ePDF	(x =	1.0	000000000000000000000000000000000000000	900000	E-33,	S/NS/ELE/	POS/GAM) =	8.566012E+	30 -2	2.133651E-01	4.283006E+30	4.283006E

LCWS 2024, U. of Tokyo, 10.7.2024

WHIZARD for $\mu^+\mu^-$ colliders and multi-TeV e^+e^- colliders

- Collinear factorization not in QED, but in full SM Han/Ma/Xie, 2007.14300, 2103.09844
- Ancient name (from SSC times!): EWA ("Effective W approximation)
- Fully inclusive in collinear/forward/beam direction
- Fast interpolation (CTEQ-like/LHAPDF-like) grids available
- Infrastructure completed in Whizard [Mękała/JRR]
- Validation against existing EWA implementation [Dahlén]

 10^{1} 10^{0} 10-1 10⁻² 10⁻³ 10-4 10⁻⁵ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0

NLL, $\mu_0 = m_e$, $\mu = 100 \text{ GeV}$

WHIZARD for $\mu^+\mu^-$ colliders and multi-TeV e^+e^- colliders

- Collinear factorization not in QED, but in full SM Han/Ma/Xie, 2007.14300, 2103.09844
- Ancient name (from SSC times!): EWA ("Effective W approximation)
- Fully inclusive in collinear/forward/beam direction
- Fast interpolation (CTEQ-like/LHAPDF-like) grids available
- Infrastructure completed in Whizard [Mękała/JRR]
- Validation against existing EWA implementation [Dahlén]

WHIZARD for $\mu^+\mu^-$ colliders and multi-TeV e^+e^- colliders

- Collinear factorization not in QED, but in full SM Han/Ma/Xie, 2007.14300, 2103.09844
- Ancient name (from SSC times!): EWA ("Effective W approximation)
- **G** Fully inclusive in collinear/forward/beam direction
- **G** Fast interpolation (CTEQ-like/LHAPDF-like) grids available
- Infrastructure completed in Whizard [Mekała/JRR]
- Validation against existing EWA implementation [Dahlén]
- \Box $\gamma\gamma$ part (quasi-) identical to collinear QED lepton PDFs
- Necessitates a special incarnation of SM implementation for MEs
- Lots of tricky and dirty details in implementation

Has to be accompanied by EW fragmentation functions (event selection!)

J. R. Reuter, DESY

 10^{1} 10⁰ 10-1 10⁻² 10⁻³ 10⁻⁴ 10⁻⁵ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 10^{2} $Z.\gamma/Z$ -Q = 3 TeV--Q = 5 TeV10 $f_{i/\mu}(x,Q)$ 10^{0} 10^{-1} 10^{-2} 10^{-3} 10^{-2} 10^{-1} x

LCWS 2024, U. of Tokyo, 10.7.2024

NLL, $\mu_0 = m_e$, $\mu = 100 \text{ GeV}$

News on technicalities, work in progress, started projects:

- ĕ Interface to PYTHIA8: many bug fixes, but still lot of work to do (e.g. soft photon numerics)
- Ş Bug fix (in v3.1.3) for beam simulations generating artefacts due to depleted regions (triggered by C³)
- Ş Bug fixes UFO interfaces: correct parsing of tokens, case-sensitiveness, allow backslash-escaped lines
- Ş Issue resolved for Z pole running: numerical failure + technical bug fixed (led to artificial shift/jump in cross section)
- Ş Simulation of LLP (long-lived particles) / displaced vertices, also with oscillations of particles (just started)
- ĕ Technically allow for muon collider beam spectra (not yet produced for WHIZARD/CIRCE2)
- Ş EDM4HEP interface: implementation started, expected maybe already for ECFA workshop
- Soft/eikonal photon (YFS) resummation started: first results expected 2025
- Again: some refactoring started on internal data structures (triggered by in-house coupling ordered MEs)

J. R. Reuter, DESY

Conclusions & Outlook

- Take-home message: WHIZARD is a full-fledged NLO Monte Carlo generator
- Highlights: NLO EW / NLO QCD for lepton colliders, NLO EW/QCD mixed corrections at LHC
- Loop-induced processes; NLO QCD for BSM models
- Generic POWHEG-type matching for NLO QCD ready, for NLO QED/EW starting
- Final preparations for in-house generation of exclusive coupling orders, fully general color structures
- Under development: EDM4HEP interface, NLL ePDFs, EWPDFs, displaced vertices / LLP, YFS, QED shower
- Solution: Caveat: many "w.i.p" or "construction sites" : limited person-power, looks more promising 2025

LCWS 2024, U. of Tokyo, 10.7.2024

tures

J. R. Reuter, DESY

QED showers + matching: EW PDFs + EW shower

QED ISR [+FSR], matching

- "Shower-recoil approach": generate p_{\perp} according to $\frac{\alpha}{\pi} \cdot \log \frac{p_{\perp}}{m^2}$
- Boost according to the generated p_{\perp} (avail. for for ISR, EPA or ISR+EPA)
- Algorithm applied recursively (similar to massive NLO EWISR PS construction)
- Recursive algorithm resembles a photon shower with *n* exclusive photons
- Implementation is starting W. Kilian/JRR/T. Striegl

Full QED shower

Based either on dipoles or antennae Can then be combined with POWHEG-type matching

J. R. Reuter, DESY

Kalinowski/Kotlarski/Mękała/Sopicki/Żarnecki, 2020

- Implementation is starting [building on code infrastructure of WHIZARD QCD (virt.) shower]

Validation of the Sudakov regime

$\mu^+\mu^- \to X, \sqrt{s} = 10 \text{ TeV}$	$\sigma_{ m LO}^{ m incl}~[{ m fb}]$	$\sigma_{ m NLO}^{ m incl}~[{ m fb}]$	$\delta_{ m EW} ~[\%]$
W^+W^-	$5.8820(2)\cdot 10^{1}$	$6.11(1) \cdot 10^1$	+3.9(2)
ZZ	$3.2730(4)\cdot 10^{0}$	$3.401(4)\cdot 10^{0}$	+3.9(1)
HZ	$1.22929(8)\cdot 10^{-1}$	$1.0557(8)\cdot 10^{-1}$	-14.12(7)
HH	$1.31569(5)\cdot 10^{-9}$	$42.9(4)\cdot 10^{-9}$ *	
W^+W^-Z	$9.609(5)\cdot 10^{0}$	$5.86(4)\cdot10^{0}$	-39.0(2)
W^+W^-H	$2.1263(9)\cdot 10^{-1}$	$1.31(1)\cdot 10^{-1}$	-38.4(5)
ZZZ	$8.565(4)\cdot 10^{-2}$	$5.27(8)\cdot 10^{-2}$	-38.5(9)
HZZ	$1.4631(6)\cdot 10^{-2}$	$0.952(6)\cdot 10^{-2}$	-34.9(4)
HHZ	$6.083(2)\cdot 10^{-3}$	$2.95(3)\cdot 10^{-3}$	-51.6(5)
HHH	$2.3202(4) \cdot 10^{-9}$	$-1.0(2)\cdot 10^{-9}$ *	

J. R. Reuter, DESY

$\mu^+\mu^- \to X, \sqrt{s} = 10 \text{ TeV}$	$\sigma_{ m LO}^{ m incl}~[{ m fb}]$	$\sigma_{ m LO+ISR}^{ m incl}$ [fb]	$\delta_{ m ISR} \ [\%]$
W^+W^-	$5.8820(2)\cdot 10^{1}$	$7.295(7)\cdot 10^{1}$	+24.0(1)
ZZ	$3.2730(4)\cdot 10^{0}$	$4.119(4)\cdot 10^{0}$	+25.8(1)
HZ	$1.22929(8) \cdot 10^{-1}$	$1.8278(5)\cdot 10^{-1}$	+48.69(4)
W^+W^-Z	$9.609(5)\cdot 10^{0}$	$10.367(8)\cdot 10^{0}$	+7.9(1)
W^+W^-H	$2.1263(9)\cdot 10^{-1}$	$2.410(2)\cdot 10^{-1}$	+13.3(1)
ZZZ	$8.565(4)\cdot 10^{-2}$	$9.431(7)\cdot 10^{-2}$	+10.1(1)
HZZ	$1.4631(6)\cdot 10^{-2}$	$1.677(1)\cdot 10^{-2}$	+14.62(8)
HHZ	$6.083(2)\cdot 10^{-3}$	$6.916(3)\cdot 10^{-3}$	+13.68(6)

arXiv: 2208.09438

(Resonance) Matching to shower / hadronization

J. R. Reuter, DESY