The top quark EW couplings in the SMEFT

LCWS 2024

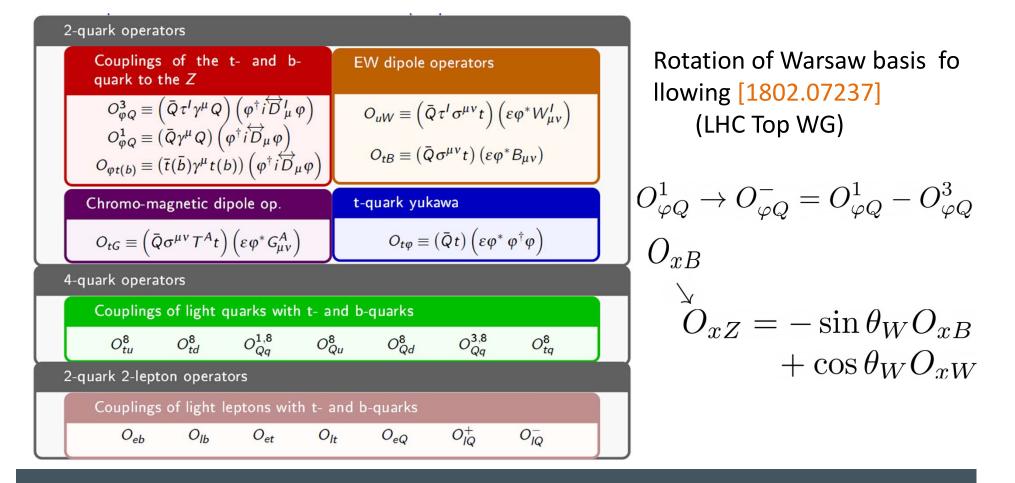
July 9, 2024 Fernando Cornet-Gomez

Together with: Victor Miralles, Marcos Miralles, Maria Moreno and Marcel Vos

Based on:

- Cotinuation of Snowmass: [2205.02140] and [2206.08326]
 - By members of the EF04 team: Jorge de Blas, Yong Du, Christophe Grojean, Jiayin Gu, Victor Miralles, Michael E. Peskin, Junping Tian, Marcel Vos, Eleni Vryonidou and also additional members of the EF03 team: Gauthier Durieux, Abel Gutiérrez Camacho, Luca Mantani, Marcos Miralles López, María Moreno Llácer, René Poncelet
- and near future paper (stay tuned)
- Newer results will be presented at ICHEP by Victor Miralles

The top quark EW couplings in the SMEFT

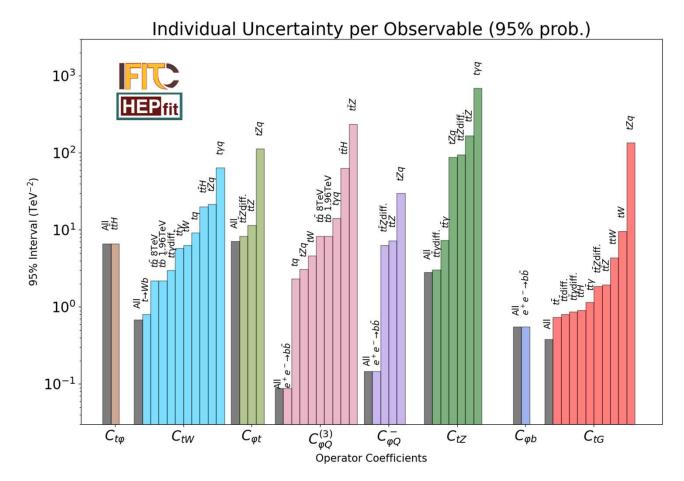

Introduction

- Goal: constrain the top-quark Wilson coefficients of the SMEFT
- Numerical fits performed using HEPfit [1910.14012]
- The following topics will be discussed:
 - Relevant observables constraining each Wilson Coefficient
 - Estimations on the improvement of the measurements for the HL-LHC
 - Estimation of the relevant observables for this fit in future lepton colliders
 - Prospects for our limits in the HL-LHC, the ILC and the rest of lepton colliders

The top quark EW couplings in the SMEFT

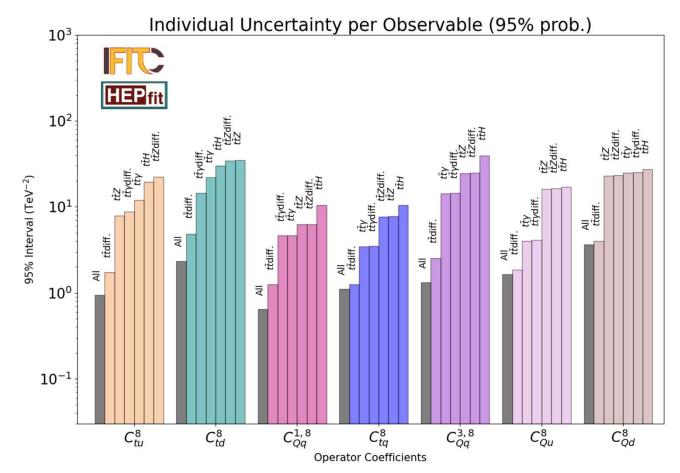
Relevant operators

The top quark EW couplings in the SMEFT COLLEGE OF ARTS AND SCIENCES Western Reserve


Relevant observables (current colliders)

Process	Observable	\sqrt{s}	$\int \mathscr{L}$	Experiment
$pp \rightarrow t\bar{t}$	$d\sigma/dm_{t\bar{t}}$ (15+3 bins)	13 TeV	140 fb ⁻¹	CMS
$pp ightarrow tar{t}$	$dA_C/dm_{t\bar{t}}$ (4+2 bins)	13 TeV	140 fb ⁻¹	ATLAS
$pp \rightarrow t\bar{t}Z$	$d\sigma/dp_T^Z$ (8 bins)NEW	/! 13 TeV	$140 { m ~fb^{-1}}$	ATLAS
$ ho p ho o t ar{t} \gamma$	$d\sigma/dp_T^\gamma$ (11 bins)	13 TeV	$140 { m ~fb^{-1}}$	ATLAS
$pp \rightarrow t\bar{t}H + tHq$	σ + diff NEW!	13 TeV	$140 { m ~fb^{-1}}$	ATLAS
pp ightarrow tZq	σ	13 TeV	77.4 fb ⁻¹	CMS
$pp ightarrow t\gamma q$	σ	13 TeV	$36 \ {\rm fb^{-1}}$	CMS
$pp ightarrow t \overline{t} W$	σ	13 TeV	36 fb ⁻¹	CMS
$pp ightarrow tar{b}$ (s-ch)	σ	8 TeV	20 fb ⁻¹	LHC
pp ightarrow tW	σ	8 TeV	20 fb ⁻¹	LHC
pp ightarrow tq (t-ch)	σ	8 TeV	20 fb ⁻¹	LHC
$t \rightarrow Wb$	F ₀ , F _L	8 TeV	20 fb ⁻¹	LHC
$par{p} ightarrow tar{b}$ (s-ch)	σ	1.96 TeV	9.7 fb ⁻¹	Tevatron
$e^-e^+ ightarrow bar{b}$	R_b , A^{bb}_{FBLR}	\sim 91 GeV	202.1 pb ⁻¹	LEP/SLD

The top quark EW couplings in the SMEFT


Individual 2 quarks-WC constraints

The top quark EW couplings in the SMEFT

Individual 4 quarks-WC constraints

The top quark EW couplings in the SMEFT

Prospects for Measurements at HL-LHC

Uncertainty	Reduced by a factor of
Theoretical	1/2
Modelling	1/2
Systematic	$1/\sqrt{\mathcal{L}}$
Statistical	$1/\sqrt{\mathcal{L}}$

The top quark EW couplings in the SMEFT

Inclusive Crossections & Helicities

			LHC Unc.			HL-LHC Unc.						
Process	Measured (fb)	SM (fb)	theo.		ex	p.		theo.		exp		
			theo.	stat.	sys.	mod.	tot.	theo.	stat.	sys.	mod.	tot.
$pp \rightarrow t\bar{t}H + tHq$	640	664.3	41.7	90	40	70.7	121.2	20.9	19.4	8.6	35.4	41.3
$pp \rightarrow t\bar{t}Z$	990	810.9	85.8	51.5	48.9	67.3	97.8	42.9	11.1	10.6	33.6	37.0
$pp ightarrow t ar{t} \gamma$	39.6	38.5	1.76	0.8	1.25	2.16	2.62	0.88	0.17	0.27	1.08	1.13
$pp \rightarrow tZq$	111	102	3.5	13.0	6.1	6.2	15.7	1.75	2.09	0.98	3.1	3.87
$pp \rightarrow t\gamma q$	115.7	81	4	17.1	21.1	21.1	34.4	2	1.9	2.3	10.6	11.0
$pp \rightarrow t\bar{t}W + EW$	770	647.5	76.1	120	59.6	73.0	152.6	38.1	13.1	6.5	36.5	39.4
$pp \rightarrow t \bar{b} \text{ (s-ch)}$	4900	5610	220	784	936	790	1454	110	35	42	395	399
$pp \rightarrow tW$	23100	22370	1570	1086	2000	2773	3587	785	49	89	1386	1390
$pp \rightarrow tq$ (t-ch)	87700	84200	250	1140	3128	4766	5810	125	51	140	2383	2390
F ₀	0.693	0.687	0.005	0.009	0.006	0.009	0.014	0.003	0.0004	0.0003	0.004	0.004
F _L	0.315	0.311	0.005	0.006	0.003	0.008	0.011	0.003	0.0003	0.0002	0.004	0.004

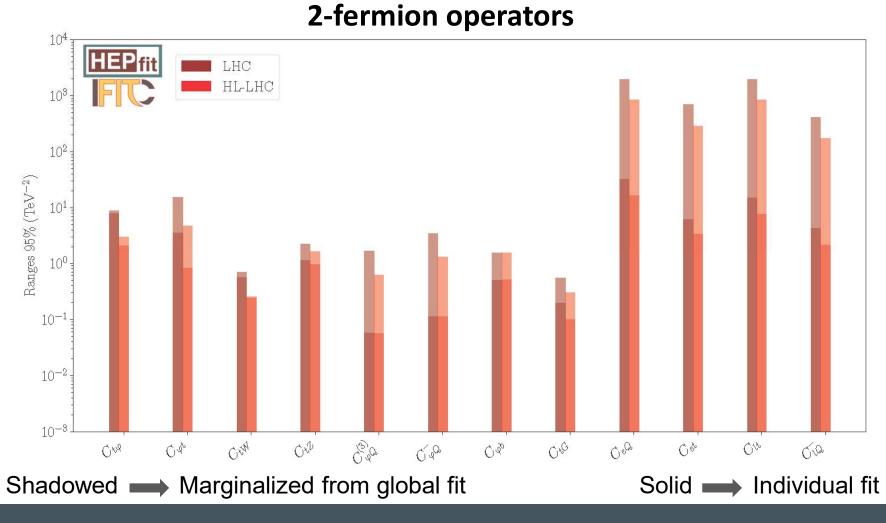
The top quark EW couplings in the SMEFT

Prospects for the measurement of $pp \rightarrow t\bar{t}\ell\bar{\ell}$

• ATLAS is making an effort to measure $pp \rightarrow t\bar{t}\ell\bar{\ell}$

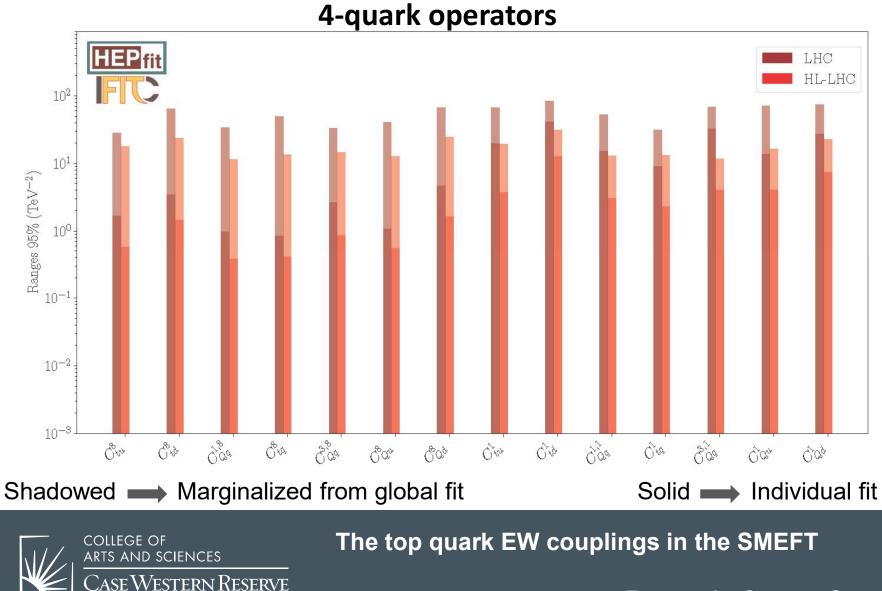
We expect to restrict them at HL-LHC to compare with lepton colliders

		Differential: $m_{\ell\bar{\ell}}$ (GeV)			
Process	Inclusive	100 - 120	120 - 140	140-180	> 180
$\sigma(10^{-6}pb)$ parton-level $pp \to t\bar{t}\ell\bar{\ell}$	2700	1500	500	340	400
$\sigma(10^{-6}pb)$ reco-level $pp \to t\bar{t}\ell\bar{\ell}$	500	230	110	80	90
$\sigma(10^{-6}pb)$ parton-level $pp \to t\bar{t}e\bar{e}$	900	500	170	110	130
$\sigma(10^{-6}pb)$ reco-level $pp \to t\bar{t}e\bar{e}$	230	130	50	40	40
$\sigma(10^{-6}pb)$ parton-level $pp \to t\bar{t}\mu\bar{\mu}$	900	500	170	120	130
$\sigma(10^{-6}pb)$ reco-level $pp \to t\bar{t}\mu\bar{\mu}$	270	130	60	40	40


MsC Thesis of Abel Gutiérrez Camacho

The top quark EW couplings in the SMEFT

COLLEGE OF ARTS AND SCIENCES CASE WESTERN RESERVE


Expected HL-LHC constraints improvement:

The top quark EW couplings in the SMEFT

Expected HL-LHC constraints improvement

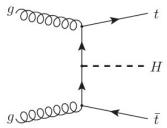
Bottom-pair production at e+e- colliders

Machine	Polarisation	Energy	Luminosity	Observable
	P(e ⁺ , e ⁻):(-30%, +80%)	250 GeV	2 ab ⁻¹	σιτ
ILC	$P(e^+, e^-):(+30\%, -80\%)$	500 GeV	4 ab ⁻¹	$\sigma_{bar{b}}\ A^{bar{b}}_{FB}$
	P(e ⁺ , e ⁻):(+50%, -80%)	1 TeV	8 ab ⁻¹	FB
D/ d	$D(a^{+},a^{-})(0)(a^{+},00)(a^{+})$	380 GeV	2 ab^{-1}	G
CLIC	$P(e^+, e^-):(0\%, +80\%)$	1.5 TeV	2.5 ab ⁻¹	$\sigma_{bar{b}} \ A^{bar{b}}_{FB}$
	P(e ⁺ , e ⁻):(0%, -80%)	3 TeV	5 ab ⁻¹	AFB
		Z-pole	$57.5/150~{ m ab}^{-1}$	G
CEPC/FCC- <i>ee</i>	Unpolarised	240 GeV	20/5 ab ⁻¹	$\sigma_{bar{b}}\ A^{bar{b}}_{FB}$
		360/365 GeV	$1/1.5 \; { m ab}^{-1}$	AFB

- Cross-section and Assymmetry FB constrain:
 - The WC related with EW precision observables: $C_{\varphi Q}^+ = C_{\varphi Q}^1 + C_{\varphi Q}^3$, $C_{\varphi b}$
 - Relevant for 2-quark 2-lepton WC: C_{lQ}^+ , C_{lb} , C_{eb}
 - The higher-energy measurement are more relevant for the 2-quark 2-lepton operators

The top quark EW couplings in the SMEFT

Top-pair production at e+e- colliders


Machine	Polarisation	Energy	Luminosity	Observable
ILC	P(e ⁺ , e ⁻):(-30%, +80%)	500 GeV	4 ab ⁻¹	Optimal
	P(e ⁺ , e ⁻):(+30%, -80%)	1 TeV	8 ab ⁻¹	Observables
-	D(z + z -) (0) (z + 0) (z)	380 GeV	2 ab ⁻¹	Optimal
CLIC	$P(e^+, e^-):(0\%, +80\%)$ $P(e^+, e^-):(0\%, -80\%)$	1.5 TeV	2.5 ab ⁻¹	Observables
	P(e', e):(0%, -80%)	3 TeV	5 ab ⁻¹	Observables
CEPC/FCC-ee	Unpolarised	350 GeV	$0.2 \ ab^{-1}$	Optimal
	Unpolarised	365 GeV	$1/1.5 \ { m ab}^{-1}$	Observables

- Optimal observables maximally exploit the information in the fully diferential $e^+e^- \rightarrow t\bar{t} \rightarrow bW^+\bar{b}W^-$ dist. [1807.02121], constraining:
 - The 2-fermion coefficients: $C_{arphi Q}^{-}$, $C_{arphi t}$, C_{tW} , C_{tZ}
 - The 2-quark 2-lepton: $C^-_{lQ}\,,\,C_{lt}\,,\,C_{et}\,,\,C_{eQ}$
 - Two different energies above the top-pair threshold are needed to constrain all the 2- and 4-

fermion operators (constant/linear vs quadratically with energy)

COLLEGE OF ARTS AND SCIENCES CASEWESTERN RESERVE UNIVERSITY The top quark EW couplings in the SMEFT

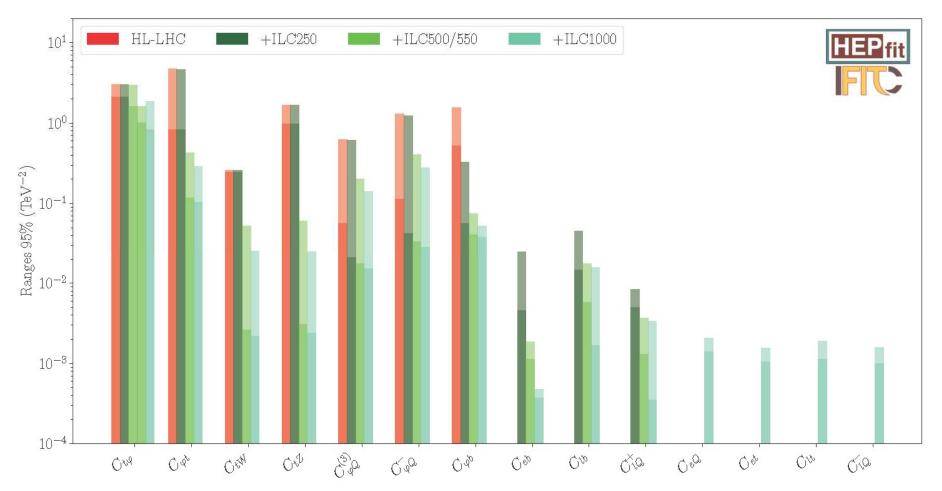
ttH production at e+e- colliders

Machine	Polarisation	Energy	Luminosity	Observable
ILC	P(e ⁺ , e ⁻):(-30%, +80%)	500/550 GeV	4 ab ⁻¹	Inclusive
ILC	$P(e^+, e^-):(+30\%, -80\%)$	1 TeV	8 ab ⁻¹	cross section
CLIC	P(e ⁺ , e ⁻):(0%, +80%) P(e ⁺ , e ⁻):(0%, -80%)	1.5 TeV	2.5 ab ⁻¹	Inclusive cross section
	P(e ⁻ , e ⁻):(0%, -80%)			

- Key observable for the top quark Yukawa coupling
- The production cross section is 3 times bigger at ILC 550 than at ILC500
 - Improved statistical sensitivity by more than a 50%
- ILC550, CLIC1500 and HL-LHC have similar sensitivities
- ILC1000 improves the expected HL-LHC sensitivity by a factor of two

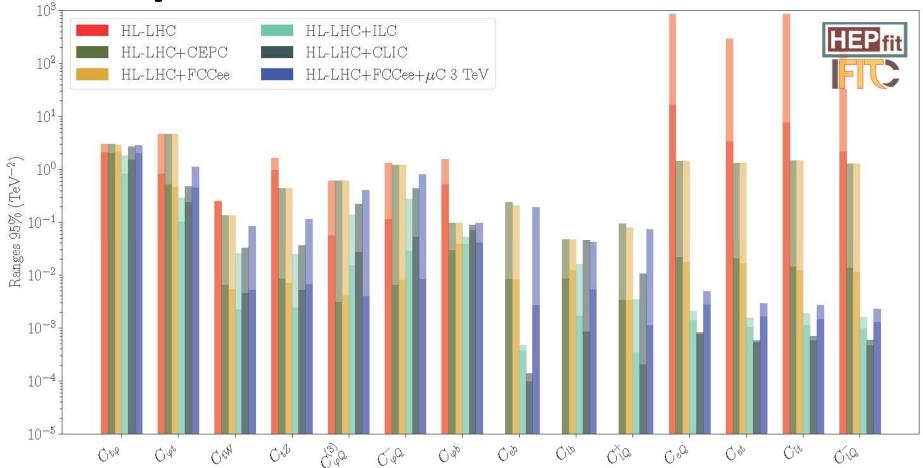
The top quark EW couplings in the SMEFT

Top at $\mu+\mu$ - collider


Machine	Polarisation	Energy	Luminosity	Observables
Muon Collider	Unpolarised	3TeV	$1 a b^{-1}$	Optimal Observables
		10TeV	$10 ab^{-1}$	(tt s-channel)
				tt (VBF)
		30TeV	$90 ab^{-1}$	ttH (s-channel and VBF)

- Optimal observables extended for Muon Collider [1807.02121], constraining:
 - The 2-fermion coefficients: $C^-_{arphi Q}\,,\,C_{arphi t}\,,\,C_{tW}\,,\,C_{tZ}$
 - The 2-quark 2-lepton: $C^-_{lQ}\,,\,C_{lt}\,,\,C_{et}\,,\,C_{eQ}$
 - Energies highly above the top-pair threshold are the key o constrain all the 2- and 4-fermion operators (constant/linear vs quadratically with energy)

The top quark EW couplings in the SMEFT


ILC

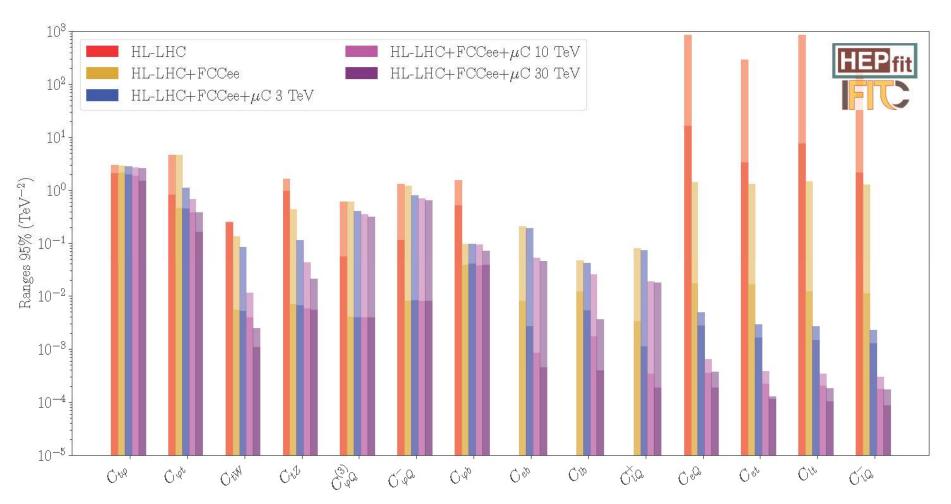
The top quark EW couplings in the SMEFT

Comparison of Future Colliders

The top quark EW couplings in the SMEFT

Summary

- HL-LHC expected to improve the bounds by roughly a factor 3
- An e+e- collider can signicantly improve bounds on bottom-quark and on top-quark operators (operated above the tt threshold)
 - ILC and CLIC operated at two center-of-mass energies above the tt threshold can provide very tight bounds on all operators, with bounds on 4F taking advantage of energygrowing sensitivity
 - FCCee and CECP (at and slightly above the tt threshold) can improve bottom- and topoperators by factor 5 (2 for 2-fermion operators)
 - Power to constrain 4-fermion operators limited by energy reach
 - Muon Collider would play a key role puting bounds on 4F operators.


The top quark EW couplings in the SMEFT

Thank you

The top quark EW couplings in the SMEFT

LHC-HL + FCC-ee + µ-Collider

The top quark EW couplings in the SMEFT