## Status of BSM searches at ATLAS

#### & some future prospects at HL-LHC

Caterina Vernieri on behalf of the ATLAS collaboration caterina@slac.stanford.edu



LCWS2024 International Workshop on Future Linear Colliders

Sta Uni

## Where is new physics?

We don't know

Exploring the unknown

- signature-based generic searches
- model-driven targeted searches

New technique to explore new ground



## Where is new physics?

We don't know

Exploring the unknown

Warped Extra Dimension:

Integration of gravity in SM and solution to the hierarchy problem



### Where is new physics?

We don't know

Exploring the unknown

New gauge bosons: Z/W-like Z' as Dark Matter mediator



### In this talk, focus on...

Many Beyond SM theories predict new resonances at the TeV mass scale This talk focuses on recent BSM results with full 13 TeV dataset

- Dilepton
- · Dijet
- Diboson -> Di-scalar









-

Event Number: 3804660240 Date: 2016-06-20, 28:55:28 CET

### Z'→ II

#### Phys. Lett. B 796 (2019) 68



### Lower Z' mass searches



arXiv:2402.15212

### $W' \rightarrow \tau v$



Neutrinos are partially reconstructed assuming momentum conservation in the transverse plane

MET+lepton **transverse mass** used to extract the signal

#### Phys. Rev. D 109 (2024) 112008



$$M_{\rm T} = \sqrt{2p_{\rm T}^l E_{\rm T}^{\rm miss}(1 - \cos[\Delta\phi(\vec{p}_{\rm T}^l, \vec{p}_{\rm T}^{\rm miss})])}$$

### Results

<u>Phys. Lett. B 796 (2019) 68</u> Phys. Rev. D 109 (2024) 112008

Z'→ ||

 $W' \rightarrow \tau v$ 



10

#### Dijet mass 8.12 TeV



Run: 305777 Event: 4144227629

## **DIJET RESONANCES**

## Dijet resonances

- A classic program at hadron colliders
- Sensitive to several scenarios
  - excited quarks, strings, new bosons, gravitons, DM







## Classic dijet search

#### Phys. Rev. Lett. 121 (2018) 081801

#### JHEP 03 (2020) 145

**Classic** resonance search for Mjj in the range 1.1–8 TeV **Low mass** analysis for 450-1800 GeV (Trigger Limited Analysis)

• lower trigger thresholds by recording only information necessary to perform analysis



## Light dijet resonances: Z'+ISR



- ISR  $\gamma$  allows to lower jet  $p_T$  threshold
- The search is performed in the 250– 650 GeV dijet mass range



arXiv:2403.08547

Run: 329869 Event: 1512463585 2017-07-16 14:42:56 CEST **XATLAS** 

#### **DI-SCALAR RESONANCES**

X→HH

Phys. Rev. Lett. 132 (2024) 231801



 $X \rightarrow SH(\gamma\gamma)$ 

3000

2000

1500

1000

500

SH) [fb]

95% CL limit on  $\sigma(gg \rightarrow X) \times \mathscr{B}(X)$ 

Search for the production of **spin-0 resonances** with masses between 0.3 and 2.0 TeV

both in the **leptonic** and **hadronic** final states 











### Vector Like Quarks

#### arXiv:1211.5663

# Vector-Like Quarks

Vector-like quarks are extra family of quarks with symmetric "vector-like" couplings to W,Z Production via

- QCD (pair) is model independent
- EW (single) interactions depends on the mixing with SM quarks

Both charged- and neutral-current decays are possible for B(-1/3) and T(2/3)

 $T \rightarrow bW, tZ, th$ B  $\rightarrow bZ, bh, tW$ 

b-tagging in boosted topology leads to high sensitivity also in the fully hadronic final state



#### arXiv:2405.19862

# TT→WqWq





• Limits as a function of BR(W/Z/Hq)



#### Phys. Rev. D 109 (2024) 112012

tZ(II)+X

- Both leptonic and hadronic top decay included
- Limits for singlet and doublet representations
- Strongest experimental limits for singlet case





q'/q

#### **Conclusions & Perspectives**

ATLAS has well-developed searches in place for new physics The 13/13.6 TeV dataset should increase by a factor 2 by the end of Run 3 in 2025

- LHC will probe *smaller couplings with more data* Improvements are also possible from :
- optimized events selection and improved object reconstruction
- include theory improvements on SM predictions
- new analysis techniques as the low-mass-dijet search





#### **CERN-LPCC-2018-05**

### HL-LHC

- Increased tracking acceptance and granularity, and timing will be key to identify forward jets and preserve resolution
- Significant gains in rare BSM
  processes from x10 more luminosity
  - Long lived particle signatures will benefit from dedicated data streams and new detector capabilities

