"Here be SUSY" - Prospects for SUSY searches at future colliders ¹

Mikael Berggren¹

¹DESY, Hamburg

LCWS2024, Tokyo University, July 2024

¹Largely based on arXiv:2003.12391

Problems with the standard model

The standard model works excellently - but there are problems:

- Theory-experiment discrepancies
 - g-2 of the muon
 - Flavour anomalies
 - Maybe M_W

Lack of explanations

- What is dark matter and dark energy?
- Naturalness and the hierarchy problem: Why is the Higgs mass so small, and why does it remains so?
- Why do the coupling constants not unify?
- Neutrinos are weird...
- Why is charge quantised?
- The SM gets the cosmological constant wrong by 120 orders of magnitude?!
- Fermi-Dirac statistics and infinitely dense black holes?

イロト 不得 トイヨト イヨト

э

Problems with the standard model

The standard model works excellently - but there are problems:

- Theory-experiment discrepancies
 - g-2 of the muon
 - Flavour anomalies
 - Maybe M_W
- Lack of explanations
 - What is dark matter and dark energy?
 - Naturalness and the hierarchy problem: Why is the Higgs mass so small, and why does it remains so?
 - Why do the coupling constants not unify?
 - Neutrinos are weird...
 - Why is charge quantised?
 - The SM gets the cosmological constant wrong by 120 orders of magnitude?!
 - Fermi-Dirac statistics and infinitely dense black holes?

Problems with the standard model

The standard model works excellently - but there are problems:

- Theory-experiment discrepancies
 - g-2 of the muon
 - Flavour anomalies
 - Maybe *M_W*
- Lack of explanations
 - What is dark matter and dark energy?
 - Naturalness and the hierarchy problem: Why is the Higgs mass so small, and why does it remains so?
 - Why do the coupling constants not unify?
 - Neutrinos are weird...
 - Why is charge quantised?
 - The SM gets the cosmological constant wrong by 120 orders of magnitude?!
 - Fermi-Dirac statistics and infinitely dense black holes?

The need for BSM

So we need models beyond the SM. Two types:

- Well defined, but incomplete models tailored to address some of the issues
 - Simplified models
 - Portal models

• Complete self-consistent models. Not so many on the market:

- Extra dimensions
- Compositness
- Leptoquarks
- And SUSY.

3

3/29

< 日 > < 同 > < 回 > < 回 > < □ > <

The need for BSM

So we need models beyond the SM. Two types:

- Well defined, but incomplete models tailored to address some of the issues
 - Simplified models
 - Portal models
- Complete self-consistent models. Not so many on the market:
 - Extra dimensions
 - Compositness
 - Leptoquarks

• And SUSY.

э

3/29

The need for BSM

So we need models beyond the SM. Two types:

- Well defined, but incomplete models tailored to address some of the issues
 - Simplified models
 - Portal models
- Complete self-consistent models. Not so many on the market:
 - Extra dimensions
 - Compositness
 - Leptoquarks
 - And SUSY.

Introduction

The need for BSM

Introduction

The need for BSM

3/29

SUSY: What do we know ?

Naturalness, hierarchy, DM, g-2 all prefers light electro-weak sector.

- Except for 3d gen. squarks, the coloured sector - where pp machines excel doesn't enter the game.
- If the LSP is higgsino or wino, EW sector is "compressed". Only for bino-LSP can the difference be large.
- So, most sparticle-decays are via cascades, with small Δ(M) at the end.
- For this, current limits from LHC are only for specific models, and LEP2 sets the scene.

< 日 > < 同 > < 回 > < 回 > < □ > <

SUSY: What do we know ?

Naturalness, hierarchy, DM, g-2 all prefers light electro-weak sector.

- Except for 3d gen. squarks, the coloured sector - where pp machines excel doesn't enter the game.
- If the LSP is higgsino or wino, EW sector is "compressed". Only for bino-LSP can the difference be large.
- So, most sparticle-decays are via cascades, with small Δ(M) at the end.
- For this, current limits from LHC are only for specific models, and LEP2 sets the scene.

SUSY: What do we know ?

Naturalness, hierarchy, DM, g-2 all prefers light electro-weak sector.

- Except for 3d gen. squarks, the coloured sector - where pp machines excel doesn't enter the game.
- If the LSP is higgsino or wino, EW sector is "compressed". Only for bino-LSP can the difference be large.
- So, most sparticle-decays are via cascades, with small Δ(M) at the end.
- For this, current limits from LHC are only for specific models, and LEP2 sets the scene.

SUSY at future e⁺e⁻ Higgs/EW/Tops factories

Wrt. LEP/SLC:

- Any Higgs factory
 - Increased luminosity
 - Improved detector technologies
- For linear Higgs factories
 - Centre-of-mass energy
 - Beam polarisation
 - More hermetic
 - Trigger-less operation of the detectors
- Wrt. hadron colliders:
 - Microscopic beam-spot
 - Cleaner environment
 - Known initial state
 - Trigger-less operation of the detectors
 - Hermetic detectors

Mikael Berggren (DESY)

- MSSM, R-parity conservation (R-parity violation always easier at e⁺e⁻)
- sfermions not NLSP (idem, except $\tilde{\tau}$ but even worse for pp ...)
- Then: LSP is Bino, Wino, or Higgsino (more or less pure), same for the NLSP
- M_1, M_2 and μ are the main-players.
- Consider any values, and combinations of signs, up to values that makes the bosinos out-of-reach for any new facility \sim a few TeV.
- Also vary other parameters (β , M_A , $M_{sfermion}$) with less impact.
- No other prejudice.

- MSSM, R-parity conservation (R-parity violation always easier at e⁺e⁻)
- sfermions not NLSP (idem, except τ̃ but even worse for pp ...)
- Then: LSP is Bino, Wino, or Higgsino (more or less pure), same for the NLSP
- M_1, M_2 and μ are the main-players.
- Consider any values, and combinations of signs, up to values that makes the bosinos out-of-reach for any new facility \sim a few TeV.
- Also vary other parameters (β , M_A , $M_{sfermion}$) with less impact.
- No other prejudice.

LCWS24

- MSSM, R-parity conservation (R-parity violation always easier at e⁺e⁻)
- sfermions not NLSP (idem, except τ̃ but even worse for pp ...)
- Then: LSP is Bino, Wino, or Higgsino (more or less pure), same for the NLSP
- M_1, M_2 and μ are the main-players.
- Consider any values, and combinations of signs, up to values that makes the bosinos out-of-reach for any new facility ~ a few TeV.
- Also vary other parameters (β , M_A , $M_{sfermion}$) with less impact.
- No other prejudice.

3

- MSSM, R-parity conservation (R-parity violation always easier at e⁺e⁻)
- sfermions not NLSP (idem, except τ̃ but even worse for pp ...)
- Then: LSP is Bino, Wino, or Higgsino (more or less pure), same for the NLSP
- M_1, M_2 and μ are the main-players.
- Consider any values, and combinations of signs, up to values that makes the bosinos out-of-reach for any new facility \sim a few TeV.
- Also vary other parameters (β , M_A , $M_{sfermion}$) with less impact.
- No other prejudice.

3

- MSSM, R-parity conservation (R-parity violation always easier at e⁺e⁻)
- sfermions not
 Then: LSP is for the NLSF
 What happens with spectra, cross-sections, BRs when exploiting this "cube"?

se for *pp* ...) ss pure), same

- M_1, M_2 and μ are the main-players.
- Consider any values, and combinations of signs, up to values that makes the bosinos out-of-reach for any new facility ~ a few TeV.
- Also vary other parameters (β , M_A , $M_{stermion}$) with less impact.
- No other prejudice.

A B F A B F

Aspects of the spectrum

- M_{LSP} vs. $M_{\tilde{\chi}_1^{\pm}}$ • M_{LSP} vs. $M_{\tilde{\chi}_2^{\circ}}$
- Colours indicate different settings of the secondary parameters (lesson is that they don't matter much...)
- Open circles indicated cases where GUT-scale unification of M₁ and M₂ is not possible

< ロ > < 同 > < 回 > < 回 >

Aspects of the spectrum

• M_{LSP} vs. $M_{\tilde{\chi}_1^{\pm}}$

- M_{LSP} vs. $M_{\tilde{\chi}^0_2}$
- Colours indicate different settings of the secondary parameters (lesson is that they don't matter much...)
- Open circles indicated cases where GUT-scale unification of M₁ and M₂ is not possible

< ロ > < 同 > < 回 > < 回 >

Aspects of the spectrum

Another angle: $\Delta(M)$ for $\tilde{\chi}_1^{\pm}$ vs. that of $\tilde{\chi}_2^0$: Important experimentally

- Three regions:
 - Bino: Both the same, but can be anything.
 - Wino: $\Delta_{\tilde{\chi}_1^{\pm}}$ small, while $\Delta_{\tilde{\chi}_2^0}$ can be anything.
 - Higgsino: Both often small

4 3 > 4 3

A D b 4 A b

8/29

Like this, for expected efficiencies:

- For the background, the total measured energy scales up or down linearly with \sqrt{s} .
- Away from resonances, the angular distributions do not change with \sqrt{s} , so that transverse quantities or projected ones in any direction in the rest-frame scales linearly with \sqrt{s} .
- Now for a typical pair-production signal:

$$P_{T max} = P_{max} = \frac{\sqrt{s}}{4} \left[1 - \left(\frac{M_{lsp}}{M_{nlsp}}\right)^2 \right] \left[1 + \sqrt{1 - \left(\frac{M_{nlsp}}{\sqrt{s}/2}\right)^2} \right]$$

If one scales both M_{nlsp} and M_{lsp} by \sqrt{s} , both brackets remain unchanged, so that P_T max scales E_{beam} , just like the background. NB: This is just kinematics, - not SUSY specific !

Like this, for expected efficiencies:

- For the background, the total measured energy scales up or down linearly with \sqrt{s} .
- Away from resonances, the angular distributions do not change with \sqrt{s} , so that transverse quantities or projected ones in any direction in the rest-frame scales linearly with \sqrt{s} .
- Now for a typical pair-production signal:

$$P_{T max} = P_{max} = \frac{\sqrt{s}}{4} \left[1 - \left(\frac{M_{lsp}}{M_{nlsp}}\right)^2 \right] \left[1 + \sqrt{1 - \left(\frac{M_{nlsp}}{\sqrt{s}/2}\right)^2} \right]$$

If one scales both M_{nlsp} and M_{lsp} by \sqrt{s} , both brackets remain unchanged, so that P_T max scales E_{beam} , just like the background. NB: This is just kinematics, - not SUSY specific !

Like this, for expected efficiencies:

- For the background, the total measured energy scales up or down linearly with \sqrt{s} .
- Away from resonances, the angular distributions do not change with \sqrt{s} , so that transverse quantities or projected ones in any direction in the rest-frame scales linearly with \sqrt{s} .
- Now for a typical pair-production signal:

$$P_{T max} = P_{max} = rac{\sqrt{s}}{4} \left[1 - \left(rac{M_{lsp}}{M_{nlsp}}
ight)^2
ight] \left[1 + \sqrt{1 - \left(rac{M_{nlsp}}{\sqrt{s}/2}
ight)^2}
ight]$$

If one scales both M_{nlsp} and M_{lsp} by \sqrt{s} , both brackets remain unchanged, so that $P_{T max}$ scales E_{beam} , just like the background. NB: This is just kinematics, - not SUSY specific !

Mikael Berggren (DESY)

LCWS24

Like this, for expected efficiencies:

• For the background, the total measured energy scales up or down linearly with \sqrt{s} .

Like this, for expected efficiencies:

• For the background, the total measured energy scales up or down linearly with \sqrt{s} .

Like this, for expected efficiencies:

• For the background, the total measured energy scales up or down linearly with \sqrt{s} .

Variation of cross-section for $pp \rightarrow$ uncoloured bosinos + gluon (CTEQ6L1 pdfs)

- Higgsino LSP
- Wino LSP
- or Bino LSP
- Note: Can vary by \sim factor 2
- Note: Exponential fall with mass

Here be SUS

10/29

Variation of cross-section for $pp \rightarrow$ uncoloured bosinos + gluon (CTEQ6L1 pdfs)

- Higgsino LSP
- Wino LSP
- or Bino LSP
- Note: Can vary by \sim factor 2
- Note: Exponential fall with mass

< ロ > < 同 > < 回 > < 回 >

Variation of cross-section for $pp \rightarrow$ uncoloured bosinos + gluon (CTEQ6L1 pdfs)

- Higgsino LSP
- Wino LSP
- or Bino LSP
- Note: Can vary by \sim factor 2
- Note: Exponential fall with mass

Variation of cross-section for $pp \rightarrow$ uncoloured bosinos + gluon (CTEQ6L1 pdfs)

- Higgsino LSP
- Wino LSP
- or Bino LSP
- Note: Can vary by \sim factor 2
- Note: Exponential fall with mass

< ロ > < 同 > < 回 > < 回 >

- Consider *fixed* √s = m_{qq}, at two masses: First rise w/ β, then fall-off w/ 1/s.
- Fold this with rapidly falling pdf:s (in particular for the sea)
- ⇒ Events at a given bino-mass comes from certain (broad) region of m_{qq}
- \Rightarrow the bino-mass is a (linear) function m_{qq}
- So, the cross-section follows the exponential fall of *m*_{qq}

- Consider fixed √s = m_{qq}, at two masses: First rise w/ β, then fall-off w/ 1/s.
- Fold this with rapidly falling pdf:s (in particular for the sea)
- ⇒ Events at a given bino-mass comes from certain (broad) region of m_{qq}
- \Rightarrow the bino-mass is a (linear) function m_{qq}
- So, the cross-section follows the exponential fall of *m*_{qq}

1/29

- Consider fixed √s = m_{qq}, at two masses: First rise w/ β, then fall-off w/ 1/s.
- Fold this with rapidly falling pdf:s (in particular for the sea)
- → Events at a given bino-mass comes from certain (broad) region of m_{qq}
- \Rightarrow the bino-mass is a (linear) function m_{qq}
- So, the cross-section follows the exponential fall of *m*_{qq}

Here be SUSY

1/29

- Consider fixed √s = m_{qq}, at two masses: First rise w/ β, then fall-off w/ 1/s.
- Fold this with rapidly falling pdf:s (in particular for the sea)
- → Events at a given bino-mass comes from certain (broad) region of m_{qq}
- \Rightarrow the bino-mass is a (linear) function m_{qq}
- So, the cross-section follows the exponential fall of *m*_{qq}

SUSY In The Briefing-book: Bino LSP (ie. large $\Delta(M)$)

NB: e^+e^- curves are certain discovery, pp are possible exclusion !!!

Mikael Berggren (DESY)

SUSY In The Briefing-book: Bino LSP - Sources

- ATL-PHYS-PUB-2018-048, ATLAS HL-LHC projection, extrapolated (up and down)
- This is for the best mode!
- Better at M_{I,SP}=0, weaker at
- The exclusion-region is the

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SUSY In The Briefing-book: Bino LSP - Sources

- ATL-PHYS-PUB-2018-048, ATLAS HL-LHC projection, extrapolated (up and down)
- This is for the best mode!
- The other decay mode
- Better at M_{I,SP}=0, weaker at lower Δ_M .
- The exclusion-region is the

LCWS24

イロト イヨト イヨト イヨト

SUSY In The Briefing-book: Bino LSP - Sources

- ATL-PHYS-PUB-2018-048, ATLAS HL-LHC projection, extrapolated (up and down)
- This is for the best mode!
- The other decay mode
- Better at M_{I,SP}=0, weaker at lower Δ_M .
- The exclusion-region is the *intersection* of the two plots, not the union!

< ロ > < 同 > < 回 > < 回 >

SUSY In The Briefing-book Bino L

SUSY In The Briefing-book: Bino LSP (ie. large Δ_M)

NB: e^+e^- curves are certain discovery, pp are possible exclusion III_{200}

Mikael Berggren (DESY)

Here be SUS

SUSY In The Briefing-book: Wino/Higgsino LSP

Mikael Berggren (DESY)

LCWS24

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

SUSY In The Briefing-book: Wino/Higgsino LSP - Soft lepton Sources

- Soft lepton analysis:
 - ATLAS HL-LHC projection ATL-PHYS-PUB-2018-031.
 - CMS HE-LHC projection (and extrapolated to FCChh) CMS-PAS-FTR-18-001.
- Orucial experimental issue:
- Unlikely that lower $\Delta(M)$ will

SUSY In The Briefing-book: Wino/Higgsino LSP - Soft lepton Sources

- Soft lepton analysis:
 - ATLAS HL-LHC projection ATL-PHYS-PUB-2018-031.
 - CMS HE-LHC projection (and extrapolated to FCChh) CMS-PAS-FTR-18-001.
- Crucial experimental issue: lepton ID
 - To separate e/μ/π, particles must reach calorimeter.
 - ... and FCChh detector has both higher B-field and calorimeter radius (and CMS has that wrt. ATLAS)
- Unlikely that lower △(M) will be excluded in future.
 Mikael Berggren (DESY)

SUSY In The Briefing-book: Wino/Higgsino LSP - Soft lepton Sources

- Soft lepton analysis:
 - ATLAS HL-LHC projection ATL-PHYS-PUB-2018-031.
 - CMS HE-LHC projection (and extrapolated to FCChh) CMS-PAS-FTR-18-001.
- Crucial experimental issue: lepton ID
 - To separate e/μ/π, particles must reach calorimeter.
 - ... and FCChh detector has both higher B-field and calorimeter radius (and CMS has that wrt. ATLAS)

Unlikely that lower ∆(M) will be excluded in future.

Mikael Berggren (DESY)

- The "Disappearing tracks" was done by FCChh (in the CDR)
 - FCChh-detector w/ FCChh-ish PU (but still too small: 500 vs. CDR number 955)
 - For higgsinos: Only just reaches 2 σ
 - But: Assumes only SM loops for mass-splitting, i.e. not SUSY mixing.
 - A mass-difference \sim 400 MeV needed, And:
 - $\Delta(M)$ for Higgsino LSP
 - ... and Wino LSP
 - Conclusion: Not at all sure that that lifetime will be large. Good chances
 no guarantee - for Wino, unlikely for Higgsino.

(Don't look at the pink curves - they correspond to a that is never considered anywhere else i the CDR)

Mikael Berggren (DESY)

Here be SUSY

LCWS24

- The "Disappearing tracks" was done by FCChh (in the CDR)
 - FCChh-detector w/ FCChh-ish PU (but still too small: 500 vs. CDR number 955)
 - For higgsinos: Only just reaches 2 σ
 - But: Assumes only SM loops for mass-splitting, i.e. not SUSY mixing.
 - A mass-difference ~ 400 MeV needed, And:
 - $\Delta(M)$ for Higgsino LSP
 - ... and Wino LSP
 - Conclusion: Not at all sure that that lifetime will be large. Good chances
 no guarantee - for Wino, unlikely for Higgsino.

(Don't look at the pink curves - they correspond to a that is never considered anywhere else i the CDR)

Mikael Berggren (DESY)

LCWS24

- The "Disappearing tracks" was done by FCChh (in the CDR)
 - FCChh-detector w/ FCChh-ish PU (but still too small: 500 vs. CDR number 955)
 - For higgsinos: Only just reaches 2 σ
 - But: Assumes only SM loops for mass-splitting, i.e. not SUSY mixing.
 - A mass-difference \sim 400 MeV needed, And:
 - $\Delta(M)$ for Higgsino LSP
 - ... and Wino LSP
 - Conclusion: Not at all sure that that lifetime will be large. Good chances
 no guarantee - for Wino, unlikely for Higgsino.

< ロ > < 同 > < 回 > < 回 >

- The "Disappearing tracks" was done by FCChh (in the CDR)
 - FCChh-detector w/ FCChh-ish PU (but still too small: 500 vs. CDR number 955)
 - For higgsinos: Only just reaches 2 σ
 - But: Assumes only SM loops for mass-splitting, i.e. not SUSY mixing.
 - A mass-difference \sim 400 MeV needed, And:
 - $\Delta(M)$ for Higgsino LSP
 - ... and Wino LSP
 - Conclusion: Not at all sure that that lifetime will be large. Good chances
 no guarantee - for Wino, unlikely for Higgsino.

< ロ > < 同 > < 回 > < 回 >

- The "Disappearing tracks" was done by FCChh (in the CDR)
 - FCChh-detector w/ FCChh-ish PU (but still too small: 500 vs. CDR number 955)
 - For higgsinos: Only just reaches 2 σ
 - But: Assumes only SM loops for mass-splitting, i.e. not SUSY mixing.
 - A mass-difference \sim 400 MeV needed, And:
 - $\Delta(M)$ for Higgsino LSP
 - ... and Wino LSP
 - Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for Wino, unlikely
 - for Higgsino.

LCWS24

< ロ > < 同 > < 回 > < 回 >

SUSY In The Briefing-book: Wino/Higgsino LSP

So: Disappearing tracks exclusion is actually off the scale !

Mikael Berggren (DESY)

Here be SUS

LCWS24

SUSY In The Briefing-book

Wino/Higgsino LSP

SUSY In The Briefing-book: Re-boot

SUSY In The Briefing-book

Wino/Higgsino LSP

SUSY In The Briefing-book: Re-boot

With models that are consistent with g-2 and no over-production of DM From arXiv:2103.13403.

Mikael Berggren (DESY)

Here be SUSY

LCWS24

Summary

Summary: SUSY - All-in-one

ATLAS HL-LHC ATL-PHYS-PUB-2018-048; ILC arXiv:2002.01239; LEP LEP LEPSUSYWG/02-04.1

Mikael Berggren (DESY)

Hot off the press: ATLAS-CONF-2023-055: pMSSM-19 (-7) scan in M_{LSP} vs. $M_{\tilde{\chi}_1^{\pm}}$

Mikael Berggren (DESY)

Hot off the press: ATLAS-CONF-2023-055: pMSSM-19 (-7) scan in M_{LSP} vs. $M_{\tilde{\chi}_1^{\pm}}$

Conclusions...

SUSY is not excluded.

- Even Plain vanilla SUSY is not excluded.
- HL-LHC might well discover SUSY, because future pp machines have
 - discovery potential to very high masses
 - but to put it bluntly NO exclusion potential: there will always be loopholes.
- Future TeV-scale e⁺e⁻ machines on the other hand have
 - Full discovery and exclusion potential up to the kinematic limit: See my previous talk!

・ロト ・ 四ト ・ ヨト ・ ヨト …

Conclusions...

- SUSY is not excluded.
- Even Plain vanilla SUSY is not excluded.
- HL-LHC might well discover SUSY, because future pp machines have
 - discovery potential to very high masses
 - but to put it bluntly NO exclusion potential: there will always be loopholes.
- Future TeV-scale e⁺e⁻ machines on the other hand have
 - Full discovery and exclusion potential up to the kinematic limit: See my previous talk!

Conclusions...

- SUSY is not excluded.
- Even Plain vanilla SUSY is not excluded.
- HL-LHC might well discover SUSY, because future pp machines have
 - discovery potential to very high masses
 - but to put it bluntly NO exclusion potential: there will always be loopholes.
- Future TeV-scale e⁺e⁻ machines on the other hand have
 - Full discovery and exclusion potential up to the kinematic limit: See my previous talk!

Conclusions...

- SUSY is not excluded.
- Even Plain vanilla SUSY is not excluded.
- HL-LHC might well discover SUSY, because future pp machines have
 - discovery potential to very high masses
 - but to put it bluntly NO exclusion potential: there will always be loopholes.
- Future TeV-scale e⁺e⁻ machines on the other hand have
 - Full discovery and exclusion potential up to the kinematic limit: See my previous talk!

Conclusions...

- SUSY is not excluded.
- Even Plain vanilla SUSY is not excluded.
- HL-LHC might well discover SUSY, because future pp machines have
 - discovery potential to very high masses
 - but to put it bluntly NO exclusion potential: there will always be loopholes.
- Future TeV-scale e⁺e⁻ machines on the other hand have
 - Full discovery and exclusion potential up to the kinematic limit: See my previous talk!

Conclusions...

- SUSY is not excluded.
- Even Plain vanilla SUSY is not excluded.
- HL-LHC might well discover SUSY, because future pp machines have
 - discovery potential to very high masses
 - but to put it bluntly NO exclusion potential: there will always be loopholes.
- Future TeV-scale e⁺e⁻ machines on the other hand have
 - Full discovery and exclusion potential up to the kinematic limit: See my previous talk!

(日)

Conclusions...

- SUSY is not excluded.
- Even Plain vanilla SUSY is not excluded.
- HL-LHC might well discover SUSY, because future pp machines have
 - discovery potential to very high masses
 - but to put it bluntly NO exclusion potential: there will always be loopholes.
- Future TeV-scale e⁺e⁻ machines on the other hand have
 - Full discovery and exclusion potential up to the kinematic limit: See my previous talk!

22/29

Why the title ?!

Mikael Berggren (DESY)

Here be SUS

LCWS24

イロン イ団 とく ヨン ・ ヨン …

23/29

The Hunt-Lenox Globe (c:a 1510)

Mikael Berggren (DESY)

Here be SUS

< □ > < @ > < 글 > < 글 > = LCWS24

Hic Sunt Dracones

Mikael Berggren (DESY)

LCWS24

That is \sim here

Mikael Berggren (DESY)

Here be SUS

LCWS24

Yes - there actually were dragons there !

Mikael Berggren (DESY)

Here be SUS

LCWS24

So...

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○ LCWS24

Here be SUSY !

ATLAS HL-LHC ATL-PHYS-PUB-2018-048; ILC arXiv:2002.01239; LEP LEP LEPSUSYWG/02-04.1

Mikael Berggren (DESY)

And...

Mikael Berggren (DESY)

Here be SUSY

< □ > < @ > < 클 > < 클 > · 클 > · 클

Maybe we start to see the breath of the dragon (latest LHC results...)

Conclusions

Maybe we start to see the breath of the dragon (latest LHC results...)

Conclusions

Maybe we start to see the breath of the dragon (latest LHC results...)

Thank You !

Mikael Berggren (DESY)

Here be SUSY

LCWS24

イロン イ理 とく ヨン 一

29/29

2

Conclusion

BACKUP SLIDES

Mikael Berggren (DESY)

Here be SUS

LCWS24

イロン イ理 とく ヨン 一

16/29

э.

ILC projection on Higgsinos and $\tilde{\tau}$:s

From arXiv:2002.01239

From arXiv:2105.08616

In real life: LEP $\tilde{\tau}$ limits

Here be SUSY

イロト イヨト イヨト イヨト

The cube

Specifically, like this:

- μ vs. M₁
- μ vs. M_2
- M₁ vs. M₂

Use SPheno 4.0.3 to calculate spectra and BR:s Use Whizard 2.8.0 for cross-sections

・ロト ・ 四ト ・ ヨト ・ ヨト

The cube

Specifically, like this:

- μ vs. M_1
- μ vs. M₂
- M₁ vs. M₂

Use SPheno 4.0.3 to calculate spectra and BR:s Use Whizard 2.8.0 for cross-sections

LCWS24

・ロト ・ 四ト ・ ヨト ・ ヨト

The cube

Specifically, like this:

- μ vs. M_1
- μ vs. M₂
- M₁ vs. M₂

Use SPheno 4.0.3 to calculate spectra and BR:s Use Whizard 2.8.0 for cross-sections

Here be SUS

LCWS24

・ロト ・ 四ト ・ ヨト ・ ヨト

19/29

э

The cube

Specifically, like this:

- μ vs. M_1
- μ vs. M_2
- M₁ vs. M₂

Use SPheno 4.0.3 to calculate spectra and BR:s Use Whizard 2.8.0 for cross-sections

Here be SUS

LCWS24

< ロ > < 同 > < 回 > < 回 >

The cube

Specifically, like this:

- μ vs. M_1
- μ vs. M_2
- *M*₁ vs. *M*₂

S

C

```
Use SPheno 4.0.3 to calculate
```

What happens with spectra, cross-sections, BRs when exploiting this "cube"?

Here be SUS

LCWS24

イロト イ理ト イヨト イヨト

Why would one expect the spectrum to be compressed ?

Natural SUSY:

•
$$m_Z^2 = 2 \frac{m_{H_U}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|^2$$

• \Rightarrow Low fine-tuning \Rightarrow
 $\mu = \mathcal{O}(\text{weak scale}).$

- Wino-like LSP: Same conclusion.
- Only for Bino-like LSP, non-compressed occurs
- But also: the data ...

quite generic:

Parameter-scan by T. Tanabe:

Here be SUSY

Why would one expect the spectrum to be compressed ?

• Natural SUSY:

•
$$m_Z^2 = 2 \frac{m_{H_u}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|^2$$

• \Rightarrow Low fine-tuning \Rightarrow
 $\mu = \mathcal{O}$ (weak scale).

- Wino-like LSP: Same conclusion.
- Only for Bino-like LSP, non-compressed occurs
- But also: the data ...

quite generic:

Parameter-scan by T. Tanabe:

Here be SUSY

Why would one expect the spectrum to be compressed ?

Natural SUSY:

•
$$m_Z^2 = 2 \frac{m_{H_U}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|^2$$

• \Rightarrow Low fine-tuning \Rightarrow
 $\mu = \mathcal{O}$ (weak scale).

- Wino-like LSP: Same conclusion.
- Only for Bino-like LSP, non-compressed occurs

• But also: the data ...

quite generic:

Parameter-scan by T. Tanabe:

Image: A mathematical states in the second states in the second

Here be SUSY

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Why would one expect the spectrum to be compressed ?

• Natural SUSY:

•
$$m_Z^2 = 2 \frac{m_{H_U}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|^2$$

• \Rightarrow Low fine-tuning \Rightarrow
 $\mu = \mathcal{O}(\text{weak scale}).$

- Wino-like LSP: Same conclusion.
- Only for Bino-like LSP, non-compressed occurs
- But also: the data ...

quite generic:

Parameter-scan by T. Tanabe:

< A >

Here be SUSY

pMSSM11 fit by Mastercode to LHC13/LEP/g-2/DM(=100% LSP)/precision observables (arXiv:1710.11091):

Here be SUSY

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

pMSSM11 fit by Mastercode to LHC13/LEP/g-2/DM(=100% LSP)/precision observables (arXiv:1710.11091):

イロト イヨト イヨト イヨト

pMSSM11 fit by Mastercode to LHC13/LEP/g-2/DM(=100% LSP)/precision observables (arXiv:1710.11091):

 $M_{\tilde{\chi}_1^{\pm}}$ - $M_{\tilde{\chi}_1^0}$ plane

Here be SUS

pMSSM11 fit by Mastercode to LHC13/LEP/g-2/DM(=100% LSP)/precision observables (arXiv:1710.11091):

Image: A mathematical states in the second states in the second

Variation of cross-section for $pp \rightarrow$ uncoloured bosinos + gluon (CTEQ6L1 pdfs)

- Higgsino LSP
- Wino LSP
- or Bino LSP
- Note: Can vary by \sim factor 2
- Note: Exponential fall with mass
- ⇒ Will extend far beyond current at high Δ(*M*), but will stay below the *M_{NLSP}* = 2 × *M_{LSP}* line (see backup...)

Variation of cross-section for $pp \rightarrow$ uncoloured bosinos + gluon (CTEQ6L1 pdfs)

- Higgsino LSP
- Wino LSP
- or Bino LSP
- Note: Can vary by \sim factor 2
- Note: Exponential fall with mass
- ⇒ Will extend far beyond current at high Δ(*M*), but will stay below the *M_{NLSP}* = 2 × *M_{LSP}* line (see backup...)

Here be SUSY

Variation of cross-section for $pp \rightarrow$ uncoloured bosinos + gluon (CTEQ6L1 pdfs)

- Higgsino LSP
- Wino LSP
- or Bino LSP
- Note: Can vary by \sim factor 2
- Note: Exponential fall with mass
- ⇒ Will extend far beyond current at high Δ(*M*), but will stay below the *M_{NLSP}* = 2 × *M_{LSP}* line (see backup...)

Variation of cross-section for $pp \rightarrow$ uncoloured bosinos + gluon (CTEQ6L1 pdfs)

- Higgsino LSP
- Wino LSP
- or Bino LSP
- Note: Can vary by \sim factor 2
- Note: Exponential fall with mass
- ⇒ Will extend far beyond current at high Δ(*M*), but will stay below the *M_{NLSP}* = 2 × *M_{LSP}* line (see backup...)

Variation of cross-section for $pp \rightarrow$ uncoloured bosinos + gluon (CTEQ6L1 pdfs)

- Higgsino LSP
- Wino LSP
- or Bino LSP
- Note: Can vary by \sim factor 2
- Note: Exponential fall with mass
- ⇒ Will extend far beyond current at high Δ(M), but will stay below the M_{NLSP} = 2 × M_{LSP} line (see backup...)

< ロ > < 同 > < 回 > < 回 >

Here be SUSY

- Consider *fixed m_{qq}*, at two masses: First rise w/ β, then fall-off w/ 1/s.
- Fold this with rapidly falling pdf:s (in particular for the sea)
- $\Rightarrow m_{qq}$ (linear) function of bino-mass

< 17 ▶

- Consider *fixed m_{qq}*, at two masses: First rise w/ β, then fall-off w/ 1/s.
- Fold this with rapidly falling pdf:s (in particular for the sea)
- $\Rightarrow m_{qq}$ (linear) function of bino-mass

< 6 b

- Consider *fixed* m_{aa}, at two masses: First rise w/ β , then fall-off w/ 1/s.
- Fold this with rapidly falling pdf:s (in particular for the sea)
- \Rightarrow m_{aa} (linear) function of bino-mass

< A >

- *m_{qq}* (linear) function of bosino-mass
- At these mass-ratios, missing *p*_T is proportional to *m*_{qq}
- ⇒ missing p_T increases linearly with bosino-mass.
- ⇒ can increase missing *p*_T-cut linearly when looking for higher masses, with the same efficiency
- Then the background decreases as much.
- S/B remains constant along lines in M_{χ̃1}[±] vs. M_{LSP}

EN 4 EN

- *m_{qq}* (linear) function of bosino-mass
- At these mass-ratios, missing *p*_T is proportional to *m*_{qq}
- ⇒ missing p_T increases linearly with bosino-mass.
- ⇒ can increase missing *p*_T-cut linearly when looking for higher masses, with the same efficiency
- Then the background decreases as much.
- S/B remains constant along lines in M_{\(\tilde{\chi}\)[±]} vs. M_{LSP}

- *m_{qq}* (linear) function of bosino-mass
- At these mass-ratios, missing *p*_T is proportional to *m*_{qq}
- ⇒ missing p_T increases linearly with bosino-mass.
- ⇒ can increase missing *p*_T-cut linearly when looking for higher masses, with the same efficiency
- Then the background decreases as much.
- S/B remains constant along lines in M_{χ̃1}[±] vs. M_{LSP}

- *m_{qq}* (linear) function of bosino-mass
- At these mass-ratios, missing *p*_T is proportional to *m*_{qq}
- ⇒ missing p_T increases linearly with bosino-mass.
- ⇒ can increase missing *p*_T-cut linearly when looking for higher masses, with the same efficiency
- Then the background decreases as much.
- S/B remains constant along lines in M_{χ̃1}[±] vs. M_{LSP}

- *m_{qq}* (linear) function of bosino-mass
- At these mass-ratios, missing *p*_T is proportional to *m*_{qq}
- → missing p_T increases
 linearly with bosino-mass.

 Uptake

Expect that the limit sticks to the same diagonal as energy is increased.

- Then the background decreases as much.
- S/B remains constant along lines in M_{χ̃1}[±] vs. M_{LSP}

Mikael Berggren (DESY)

Here be SUSY

LCWS24

Why is this important?

- $c\tau$ needs to be macroscopic to get "Disappearing tracks". Cf. ATLAS arXiv:1712.02118: $c\tau\gtrsim 6$ cm needed.
- $c\tau$ for Higgsino LSP
- ... and Wino LSP
- Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for Wino, unlikely for Higgsino.

3

Why is this important?

- cτ needs to be macroscopic to get "Disappearing tracks". Cf. ATLAS arXiv:1712.02118: cτ ≥ 6 cm needed.
- $c\tau$ for Higgsino LSP
- ... and Wino LSP
- Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for Wino, unlikely for Higgsino.

э

25/29

Why is this important?

- cτ needs to be macroscopic to get "Disappearing tracks". Cf. ATLAS arXiv:1712.02118: cτ ≥ 6 cm needed.
- $c\tau$ for Higgsino LSP
- ... and Wino LSP
- Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for Wino, unlikely for Higgsino.

- Tel - Se

Why is this important?

- cτ needs to be macroscopic to get "Disappearing tracks". Cf. ATLAS arXiv:1712.02118: cτ ≥ 6 cm needed.
- $c\tau$ for Higgsino LSP
- ... and Wino LSP
- Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for Wino, unlikely for Higgsino.

Why is this important?

- cτ needs to be macroscopic to get "Disappearing tracks". Cf. ATLAS arXiv:1712.02118: cτ ≥ 6 cm needed.
- $c\tau$ for Higgsino LSP
- ... and Wino LSP
- Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for Wino, unlikely for Higgsino.

Here be SUS'

Aspects of the spectrum: c au for $ilde{\chi}^{\pm}_1$ vs. M_{LSP}

second opinion on Higgsino $\Delta(M)$: feynhiggs

Here be SUSY

LCWS24

- ATL-PHYS-PUB-2018-048, ATLAS HL-LHC projection, extrapolated (up and down)
- This is for the best mode!
- The other decay mode
- Better at $M_{LSP}=0$, weaker at lower Δ_M .
- Why is the decay-mode an issue? Here's why :
 - Vary signs of μ , M_1 , and M_2
- So: The exclusion-region is the *intersection* of the two plots, not the *union*!

Here be SUS

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Bino LSP: signs

SUSY In The Briefing-book: Bino LSP - Sources

- ATL-PHYS-PUB-2018-048, ATLAS HL-LHC projection, extrapolated (up and down)
- This is for the best mode!
- The other decay mode
- Better at $M_{LSP}=0$, weaker at lower Δ_M .
- Why is the decay-mode an issue? Here's why :
 - Vary signs of μ , M_1 , and M_2
- So: The exclusion-region is the *intersection* of the two plots, not the *union*!

Here be SUS

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Bino LSP: signs

SUSY In The Briefing-book: Bino LSP - Sources

- ATL-PHYS-PUB-2018-048, ATLAS HL-LHC projection, extrapolated (up and down)
- This is for the best mode!
- The other decay mode
- Better at *M_{LSP}*=0, weaker at lower Δ_M.
- Why is the decay-mode an issue? Here's why :
 - Vary signs of μ , M_1 , and M_2
- So: The exclusion-region is the *intersection* of the two plots, not the *union*!

< 47 ▶

Here be SUS

< 문 > < 문 > I CWS24

- ATL-PHYS-PUB-2018-048, ATLAS HL-LHC projection, extrapolated (up and down)
- This is for the best mode!
- The other decay mode
- Better at $M_{LSP}=0$, weaker at lower Δ_M .
- Why is the decay-mode an issue? Here's why :
 - Vary signs of μ , M_1 , and M_2
- So: The exclusion-region is the *intersection* of the two plots, not the *union*!

'Bino , $\mu > M_2$, case '1 ш 0.8 00 0.6 $\tilde{\chi}_2^0 \rightarrow h \tilde{\chi}_1^0$ 0.4 $\tilde{\gamma}_{2}^{0} \rightarrow Z \tilde{\gamma}_{1}^{0}$ 0.2 0 6000 2000 4000 $M(\tilde{\gamma}_{n}^{0})$

Here be SUS

- ATL-PHYS-PUB-2018-048, ATLAS HL-LHC projection, extrapolated (up and down)
- This is for the best mode!
- The other decay mode
- Better at $M_{LSP}=0$, weaker at lower Δ_M .
- Why is the decay-mode an issue? Here's why :
 - Vary signs of μ , M_1 , and M_2
- So: The exclusion-region is the *intersection* of the two plots, not the *union*!

イロト イヨト イヨト イヨト

Here be SUS

- ATL-PHYS-PUB-2018-048, ATLAS HL-LHC projection, extrapolated (up and down)
- This is for the best mode!
- The other decay mode
- Better at $M_{LSP}=0$, weaker at lower Δ_M .
- Why is the decay-mode an issue? Here's why :
 - Vary signs of μ , M_1 , and M_2
- So: The exclusion-region is the *intersection* of the two plots, not the *union*!

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Here be SUSY

Mono->

SUSY In The Briefing-book: Wino/Higgsino LSP - Very low $\Delta(M)$ Sources

- Two methods: "Disappearing tracks" and "Mono-X"
 - "Disappearing tracks" (see above)
 - and "Mono-X"
- arxiv:1805.00015, Based on DELPHES with ATLAS-card (⇒ LHC PU...)
- Both from the HE/HL-LHC input to ESU (*not* FCChh)
- Systematics-limited. Both ATLAS and CMS state ~ 10% in existing "Mono-X" searches (PU 1/20 of FCChh)

Mikael Berggren (DESY)

Here be SUS

Mono-X

SUSY In The Briefing-book: Wino/Higgsino LSP - Very low $\Delta(M)$ Sources

- Two methods: "Disappearing tracks" and "Mono-X"
 - "Disappearing tracks" (see above)
 - and "Mono-X"
- arxiv:1805.00015, Based on DELPHES with ATLAS-card (⇒ LHC PU...)
- Both from the HE/HL-LHC input to ESU (*not* FCChh)
- Systematics-limited. Both ATLAS and CMS state ~ 10% in existing "Mono-X" searches (PU 1/20 of FCChh)

Mikael Berggren (DESY)

Here be SUS

Mono-X

SUSY In The Briefing-book: Wino/Higgsino LSP - Very low $\Delta(M)$ Sources

- Two methods: "Disappearing tracks" and "Mono-X"
 - "Disappearing tracks" (see above)
 - and "Mono-X"
- arxiv:1805.00015, Based on DELPHES with ATLAS-card (⇒ LHC PU...)
- Both from the HE/HL-LHC input to ESU (*not* FCChh)
- Systematics-limited. Both ATLAS and CMS state ~ 10% in existing "Mono-X" searches (PU 1/20 of FCChh)

Mikael Berggren (DESY)

Here be SUS¹

LCWS24

Why is this important?

6

- Because cτ depends on Δ(M), and cτ needs to be macroscopic to get
 "Disappearing tracks". Cf. ATLAS arXiv:1712.02118 cτ ≥ 6 cm needed.
- So $\Delta(M) \lesssim 500$ MeV needed.
- $\Delta(M)$ for Higgsino LSP
- ... and Wino LSP
- Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for
 Wine, unlikely for bliggsine.

Mikael Berggren (DESY)

イロト イポト イヨト イヨト

Why is this important?

- Because cτ depends on Δ(M), and cτ needs to be macroscopic to get
 "Disappearing tracks". Cf. ATLAS arXiv:1712.02118: cτ ≥ 6 cm needed.
- So $\Delta(M) \lesssim 500$ MeV needed.
- $\Delta(M)$ for Higgsino LSF
- ... and Wino LSP
- Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for Wino, unlikely for Higgsino.

Why is this important?

- Because cτ depends on Δ(M), and cτ needs to be macroscopic to get
 "Disappearing tracks". Cf. ATLAS arXiv:1712.02118: cτ ≥ 6 cm needed.
- So $\Delta(M) \lesssim 500$ MeV needed.
- $\Delta(M)$ for Higgsino LSF
- ... and Wino LSP
- Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for Wino, unlikely for Higgsino.

4 3 > 4 3

Why is this important?

- Because cτ depends on Δ(M), and cτ needs to be macroscopic to get
 "Disappearing tracks". Cf. ATLAS arXiv:1712.02118: cτ ≥ 6 cm needed.
- So $\Delta(M) \lesssim 500$ MeV needed.
- $\Delta(M)$ for Higgsino LSP
- ... and Wino LSP
- Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for Wino, unlikely for Higgsino.

Lines are the "SM-loops only" predictions.

Mikael Berggren (DESY)

LCWS24

Why is this important?

- Because cτ depends on Δ(M), and cτ needs to be macroscopic to get
 "Disappearing tracks". Cf. ATLAS arXiv:1712.02118: cτ ≥ 6 cm needed.
- So $\Delta(M) \lesssim 500$ MeV needed.
- $\Delta(M)$ for Higgsino LSP
- ... and Wino LSP
- Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for Wino, unlikely for Higgsino.

Lines are the "SM-loops only" predictions.

Mikael Berggren (DESY)

LCWS24

Why is this important?

- Because cτ depends on Δ(M), and cτ needs to be macroscopic to get
 "Disappearing tracks". Cf. ATLAS arXiv:1712.02118: cτ ≥ 6 cm needed.
- So $\Delta(M) \lesssim 500$ MeV needed.
- $\Delta(M)$ for Higgsino LSP
- ... and Wino LSP
- Conclusion: Not at all sure that that lifetime will be large. Good chances - no guarantee - for Wino, unlikely for Higgsino.

Lines are the "SM-loops only" predictions.

Mikael Berggren (DESY)

Here be SUS'

LCWS24