

Searching for heavy neutral leptons through exotic Higgs decays

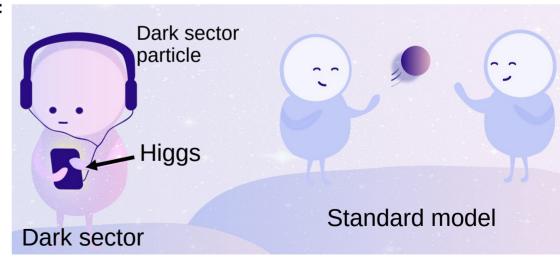
July 2024

Simon Thor¹, Masaya Ishino², Junping Tian²

¹KTH Royal Institute of Technology, Sweden ²International Center for Elementary Particle Physics, University of Tokyo, Japan

Image source: Sterile Neutrino Contraints

Higgs as probe of BSM


• No signs of BSM yet (except neutrino mass)

Higgs as probe of BSM

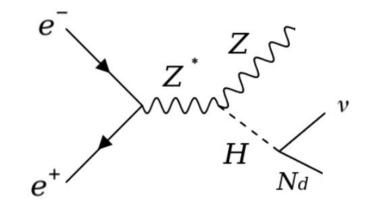
- No signs of BSM yet (except neutrino mass)
- Higgs boson one of the least understood SM particles

Higgs as probe of BSM

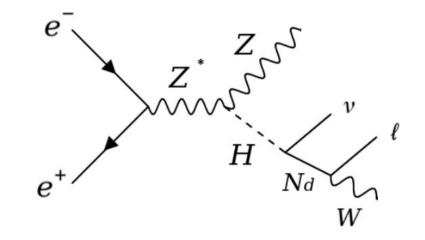
- No signs of BSM yet (except neutrino mass)
- Higgs boson one of the least understood SM particles
 - Might be connected to BSM, e.g., a dark sector
- Precision measurements of Higgs could lead to discoveries

Heavy neutral leptons

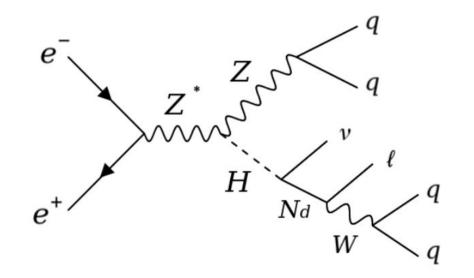
• Also known as sterile neutrinos, dark neutrinos etc.

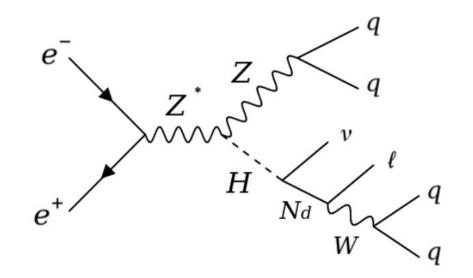

Heavy neutral leptons

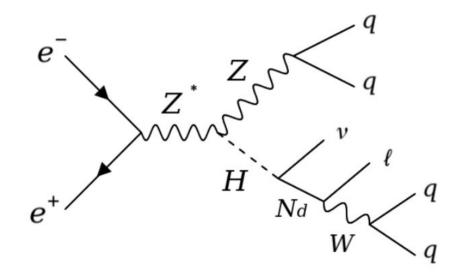
- Also known as sterile neutrinos, dark neutrinos etc.
- Various models
 - Majorana particle that gives neutrinos mass via Type-I Seesaw mechanism
 - Dark sector model with SU(2)_D that result in matterantimatter asymmetry [arXiv:1910.08068]


Heavy neutral leptons

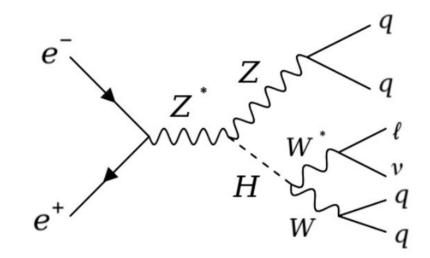
- Also known as sterile neutrinos, dark neutrinos etc.
- Various models
 - Majorana particle that gives neutrinos mass via Type-I Seesaw mechanism
 - Dark sector model with SU(2)_D that result in matterantimatter asymmetry [arXiv:1910.08068]
- In this study: $m_Z < m_{Nd} < m_H$


• Exotic Higgs decay: $H \rightarrow \nu N_d$

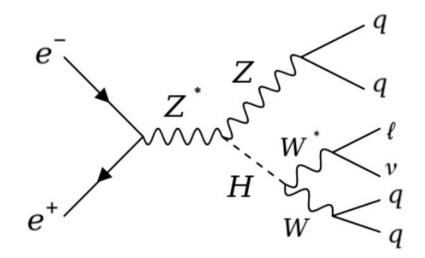

- Exotic Higgs decay: $H \to \nu N_d$
- Only e, µ channels


- Exotic Higgs decay: $H \to \nu N_d$
- Only e, μ channels
- Focus on hadronic decay mode

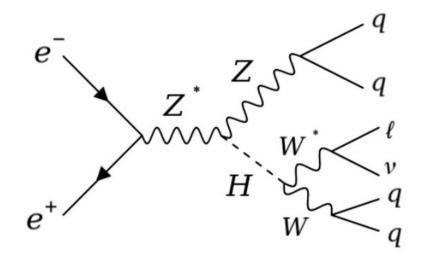
- Exotic Higgs decay: $H \to \nu N_d$
- Only e, μ channels
- Focus on hadronic decay mode
- Signal characteristics:
 - 4 jets
 - 1 isolated lepton
 - Missing 4-momentum



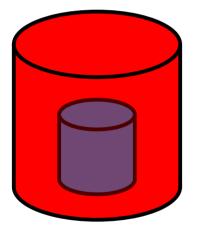
- Exotic Higgs decay: $H \to \nu N_d$
- Only e, μ channels
- Focus on hadronic decay mode
- Signal characteristics:
 - 4 jets
 - 1 isolated lepton
 - Missing 4-momentum
- Free parameters: HNL mass, $BR(H \rightarrow \nu N_d)BR(N_d \rightarrow IW)$


Dominant background

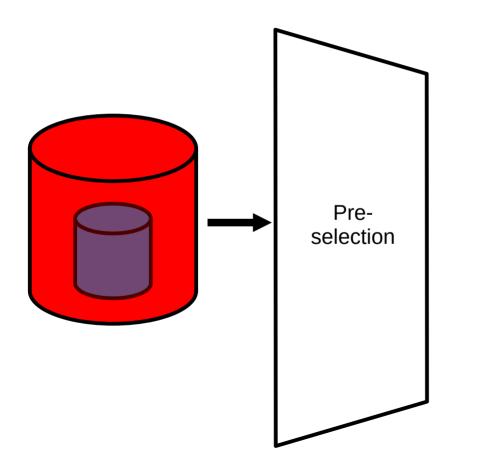
• Same final state as signal

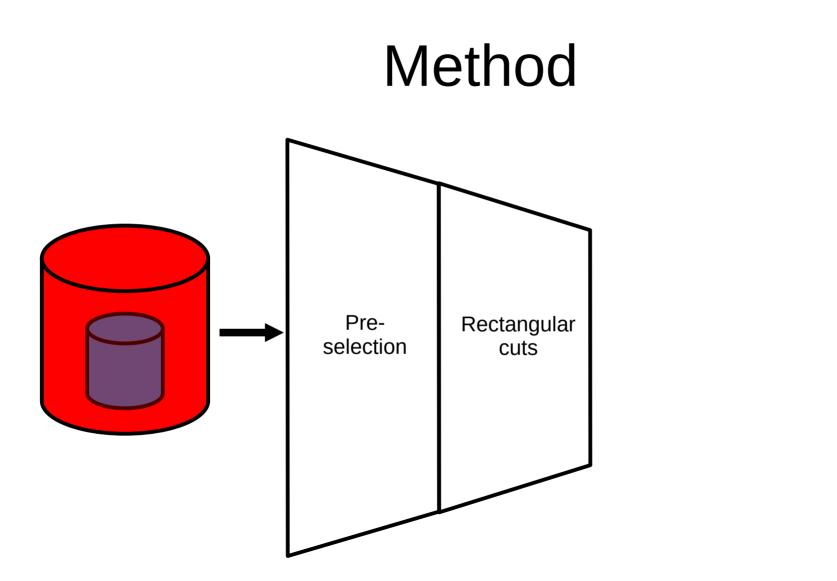

Dominant background

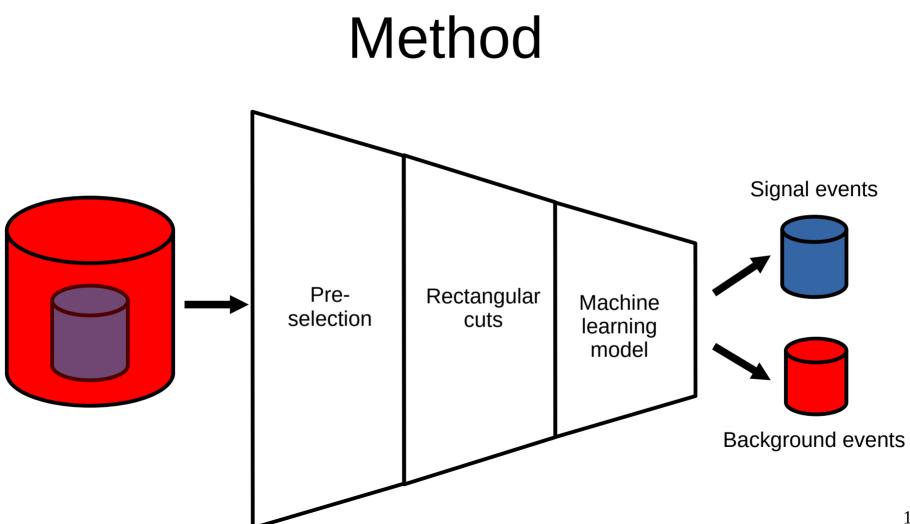
- Same final state as signal
- Also includes a W boson
 - Problem for invariant mass reconstruction



Dominant background


- Same final state as signal
- Also includes a W boson
 - Problem for invariant mass reconstruction
- W* can be used for filtering this background




Method

Method

- Full detector (ILD) simulations
 - Whizard (event generation) \rightarrow Pythia (parton shower + hadronization) \rightarrow Geant4 (detector simulation) \rightarrow Marlin (reconstruction)

- Full detector (ILD) simulations
 - Whizard (event generation) \rightarrow Pythia (parton shower + hadronization) \rightarrow Geant4 (detector simulation) \rightarrow Marlin (reconstruction)
- 1000 fb⁻¹ each of beam polarization (-0.8, +0.3), (+0.8, -0.3)

- Full detector (ILD) simulations
 - Whizard (event generation) \rightarrow Pythia (parton shower + hadronization) \rightarrow Geant4 (detector simulation) \rightarrow Marlin (reconstruction)
- 1000 fb⁻¹ each of beam polarization (-0.8, +0.3), (+0.8, -0.3)
- √s = 250 GeV
- Aligns with currently proposed configuration of ILC

- Full detector (ILD) simulations
 - Whizard (event generation) \rightarrow Pythia (parton shower + hadronization) \rightarrow Geant4 (detector simulation) \rightarrow Marlin (reconstruction)
- 1000 fb⁻¹ each of beam polarization (-0.8, +0.3), (+0.8, -0.3)
- √s = 250 GeV
- Aligns with currently proposed configuration of ILC

Signal

- m_{ND} = 95, 100, 105, 110, 115, 120 GeV
- ~200 000 events per mass per beam polarization

Pre-selection

- Require at least one isolated lepton (neural network)
 - Muon: lepton finder output > 0.5
 - Electron: lepton finder output > 0.2

Pre-selection

- Require at least one isolated lepton (neural network)
 - Muon: lepton finder output > 0.5
 - Electron: lepton finder output > 0.2
- Cluster remaining particles to 4 jets with Durham clustering
- Pair jets to Z and W to minimize

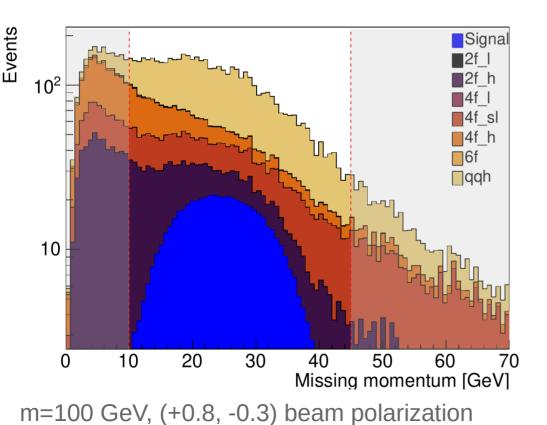
$$\chi^2 = \left(\frac{m_W - m_{12,jet}}{\Delta m_{W,jet}}\right)^2 + \left(\frac{m_Z - m_{34,jet}}{\Delta m_{Z,jet}}\right)^2$$

Mass resolution calculated from invariant mass from MC truth jets

Rectangular cuts

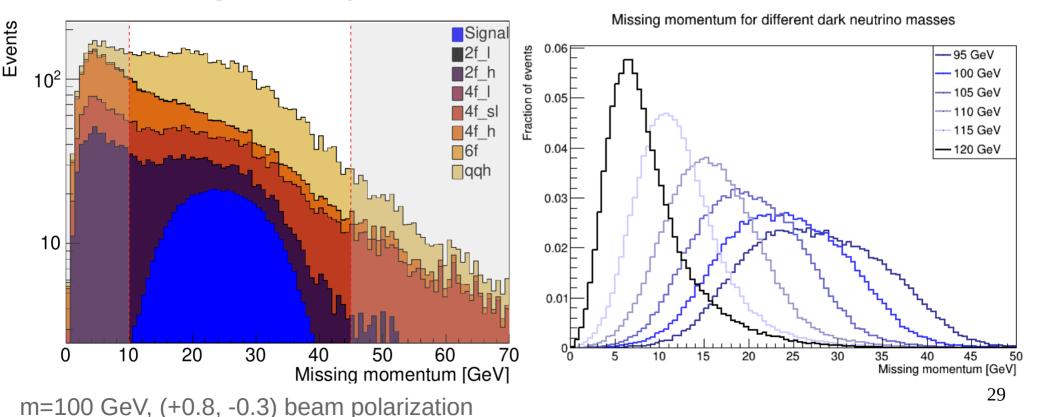
- Optimize cuts to maximize significance $\sigma = s/\sqrt{(s+b)}$
- Separate cuts for each beam polarization, HNL mass

Rectangular cuts


- Optimize cuts to maximize significance $\sigma = s/\sqrt{(s+b)}$
- Separate cuts for each beam polarization, HNL mass

Example (m=100 GeV, (+0.8, -0.3) beam polarization)

- (Lepton energy)/50 + (missing energy)/100 < 1
- Isolated lepton finder output > 0.6
- 160 GeV < 4-jet invariant mass < 220 GeV
- Durham jet distance $y_{4\rightarrow 3} > 0.004$ (if jets are more likely from 4 or 3 quarks)
- At least 4 particles in each jet
- 10 GeV < Missing momentum < 45 GeV


$$y_{4\to3} = \min_{i,j} \left\{ \frac{2\min\{E_i, E_j\}^2 (1 - \cos(\theta_{ij}))}{E_{vis}^2} \right\}$$
27

Missing momentum cut

Missing momentum cut

• Differs significantly for different dark neutrino masses

Machine learning

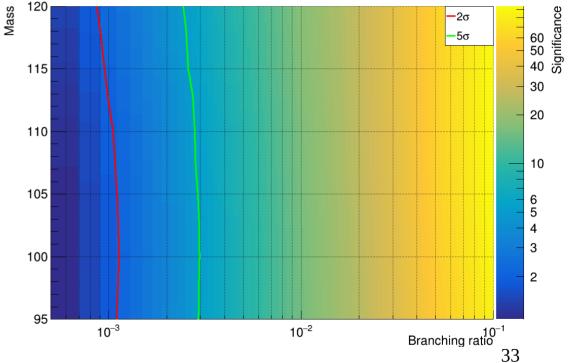
- Boosted decision tree
- Separate BDT for each mass, beam polarization

Machine learning

- Boosted decision tree
- Separate BDT for each mass, beam polarization

Input parameters

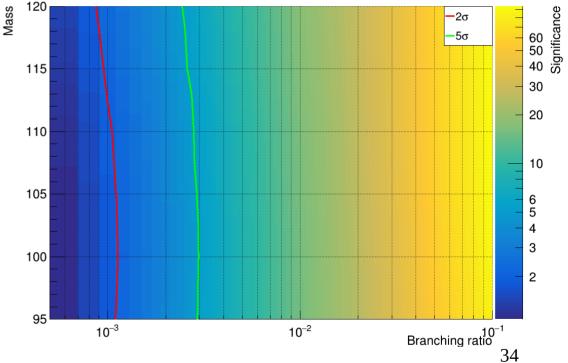
- Lepton energy, missing energy
- 4-jet combined momentum
- Angle between isolated lepton and closest jet
- Lepton, Missing 4-momentum, Z boson production angle
- Lepton helicity angle in dark neutrino rest frame
- Higgs, Z boson, W boson, dark neutrino invariant mass


Total significance

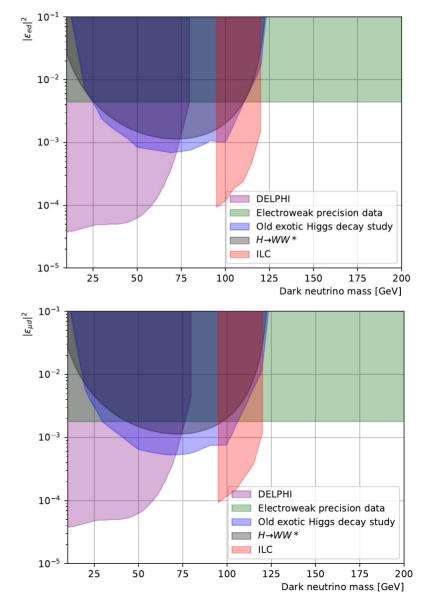
- Background reduced by factor of ~200 000
- ~20% of signal left

Total significance

- Background reduced by factor of ~200 000
- ~20% of signal left
- H branching ratio can be probed down to **0.1%**

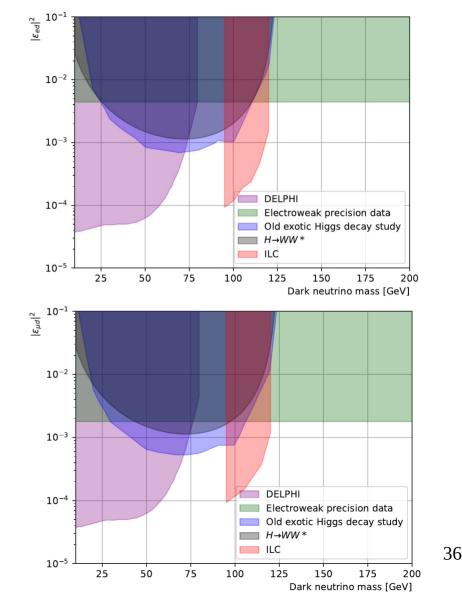

Exclusion plot

Total significance


- Background reduced by factor of ~200 000
- ~20% of signal left
- H branching ratio can be probed down to **0.1%**
- By some estimates, BR measurements could be 25x better than HL-LHC!

Exclusion plot

Exclusion


 Convert branching ratio to mixing angle between SM neutrino and HNL

35

Exclusion

- Convert branching ratio to mixing angle between SM neutrino and HNL
- Exclusion improved by factor of 10 compared to current constraints (possibly more)

Summary

e

H

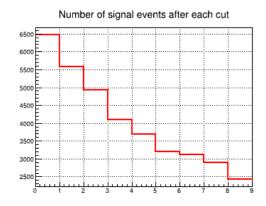
Nd

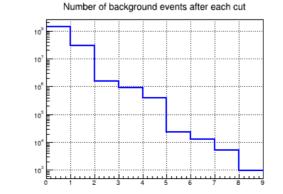
- Study heavy neutral lepton model
- $m_Z < m_{Nd} < m_H$
- First ever full detector simulation for $H \to N_{{\ensuremath{\mathfrak{C}}}^+}$
- Rectangular cuts + machine learning
- Constrain BR(H $\rightarrow \nu N_d$)BR(N_d \rightarrow IW) to **0.1%** (at 2 σ)
- 25x higher significance compared to HL-LHC
 - ILC allows for high precision measurements!
- Preprint available: <u>arXiv:2309.11254</u>

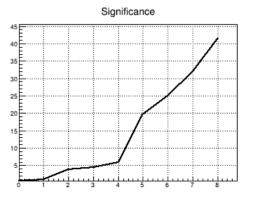
Thank you for listening!

Image source: Sterile Neutrino Contraints

Side outcome: $H \rightarrow WW^*$

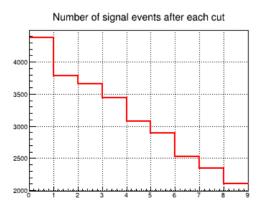

- $H \rightarrow WW^* \rightarrow qq lv$ dominant background
- $H \rightarrow WW^*$ interesting to study on its own
 - Key to Higgs total width

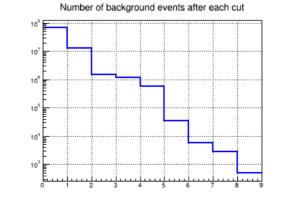


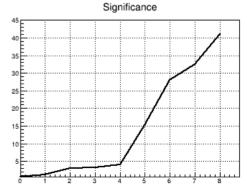

- Same workflow as dark neutrino analysis
- Dark neutrino-related input parameters to BDT are removed
- No lepton channel separation (yet)

Cut table | (-0.8, +0.3) beam

	Total signal	Total background	Significance	2f_l	2f_h	4f_l	4f_sl	4f_h	6f
No cuts	6472	136651487	0.55	12982897	77324421	10379315	19163106	16800470	1278
Pre-selection	5583	30106102	1.02	7366002	1606336	7651845	13260215	220833	872
elep/50. + emis/90. < 1.	4930	1556237	3.95	75113	265900	857303	209602	147613	705
0.8 < mvalep	4101	877321	4.37	54525	41290	623639	138607	18676	585
(180. < mvis) && (mvis < 225.)	3695	386614	5.91	34476	21865	237881	82092	9918	383
0.007 < y34	3201	23318	19.66	160	2109	406	13519	6778	346
2 < min_n	3126	12464	25.04	4	1223	7	4376	6541	314
(10. < mis.P()) && (mis.P() < 50.)	2896	5327	31.93	2	564	4	2207	2449	102
MVA cut	2420	981	41.50	1	73	2	570	304	31






40

Cut table | (+0.8, -0.3) beam

	Total signal	Total background	Significance	2f_l	2f_h	4f_l	4f_sl	4f_h	6f
No cuts	4376	66511092	0.54	10314870	45672588	6114301	2839022	1570051	260
Pre-selection	3778	12547917	1.07	5696748	979693	4109167	1739683	22431	194
elep/60. + emis/100. < 1.	3661	1518141	2.97	99987	189804	1016886	193442	17855	167
0.6 < mvalep	3435	1206227	3.12	88826	62401	890288	159199	5357	156
(160. < mvis) && (mvis < 220.)	3071	559413	4.10	63936	33233	359843	99486	2819	96
0.004 < y34	2896	33799	15.12	565	6575	2378	21820	2369	93
4 < min_n	2527	5638	27.97	0	1775	0	1881	1910	71
(10. < mis.P()) && (mis.P() < 50.)	2344	2852	32.52	0	879	0	1049	902	23
MVA cut	2100	510	41.11	0	94	0	245	162	9

41

Significance

- Combined significance: 58σ
- Previous study of same decay channel at ILC (H. Ono): 36σ
 - Both $W^{\star} \rightarrow I \nu$ and $W^{\star} \rightarrow q q$ were used
- Previous study of H $_{\rightarrow}$ WW* significance, with all decay modes: 61 σ
- **Major improvement** of significance compared to previous studies at ILC

Particles in dark sector

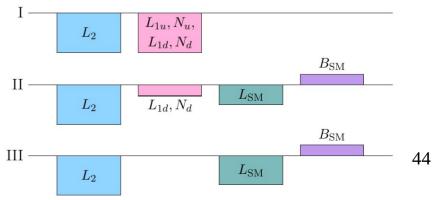
- Two Higgs doublets
- Higgs potential:

$$\begin{split} \Phi) &= \mu_1^2 \Phi_1^{\dagger} \Phi_1 + \mu_2^2 \Phi_2^{\dagger} \Phi_2 - \mu_3^2 (\Phi_1^{\dagger} \Phi_2 + c.c.) \\ &+ \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ &+ \left[\frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \lambda_6 (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) + \lambda_7 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_2) + c.c. \right]. \end{split}$$

- $\lambda_{5,6,7}$ are complex (CP violation)
- Left-handed L_{1u} , L_{1d} with charge Q_1
- Right-handed N_u , N_d (dark neutrinos) with charge Q_1
- L₂: massless particle with charge Q₂
 - Exists to counteract Witten's anomaly but not important

field	$SU(2)_D$	γ_5	Q_1	Q_2	\mathbb{Z}_2
$\Phi_{1,2}$	2	0	0	0	+
L_1	2	-1	+1	0	+
$N_{u,d}$	1	+1	+1	0	+
L_2	2	-1	0	+1	—

Early universe

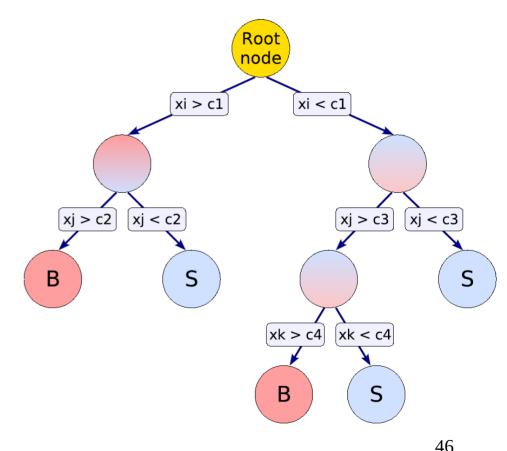

I. Dark first-order phase transition in early universe

• More particles than antiparticles in dark sector

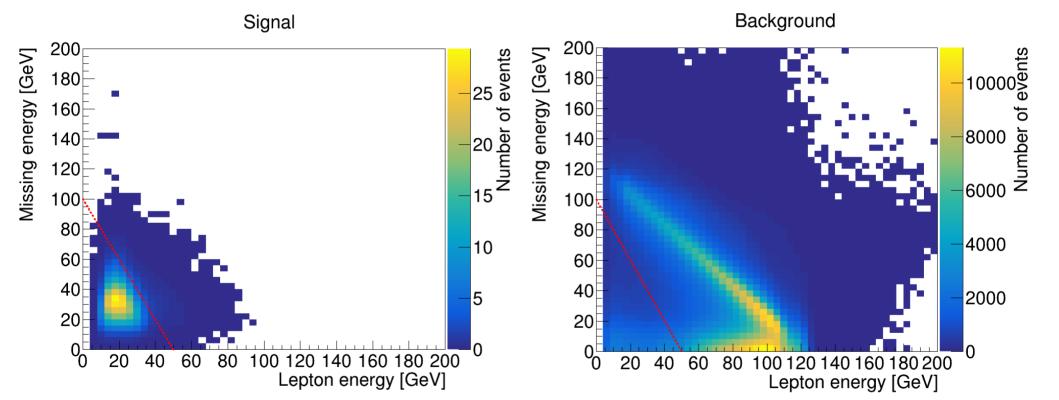
 $II.N_{\text{u}}$ decays to SM leptons

- Q₁ asymmetry converted to SM lepton asymmetry
- Some leptons converted to baryons through SM sphaleron
- III.After EW symmetry breaking, N_d decays to SM leptons

→ additional lepton asymmetry

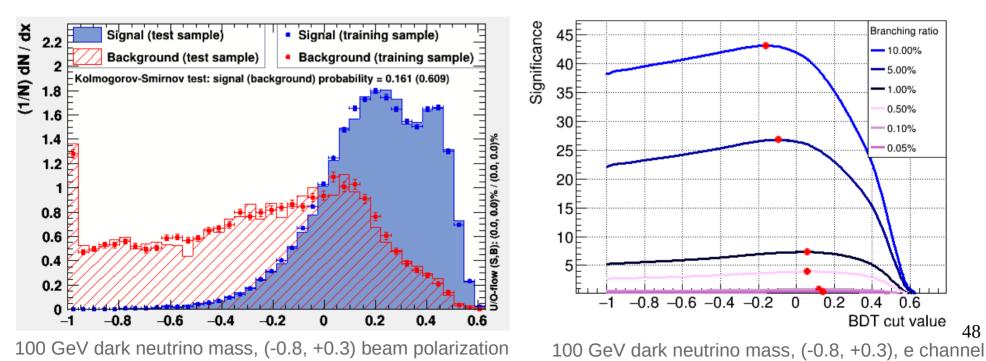

Techincal details

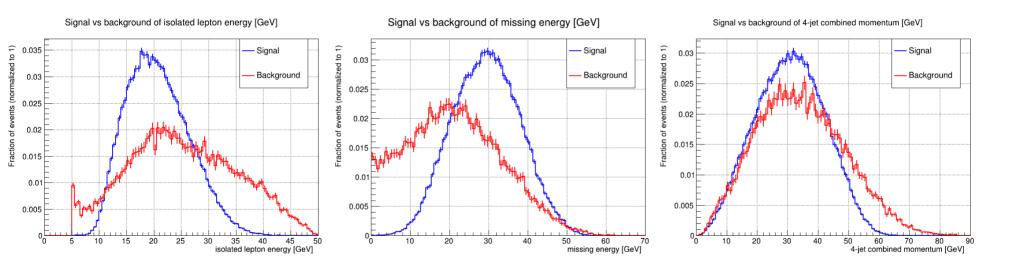
- Use ROOT::RDataFrame in Jupyter notebook Simplifies:
 - Making and analyzing cuts
 - Defining new variables
 - Running the code in parallel \rightarrow performance boost
 - Visualize the filtered data
 - Exploratory data analysis


ROOT::RDataFrame df("myTree", file); auto h = df.Filter("y > 2").Histo1D("x"); h->Draw()

Boosted decision tree

- Multiple binary decision trees are trained
- When evaluating an event, the trees "vote" if the event is signal or background
- The BDT output is the weighted mean of all trees
- Events are reweighted such that signal and background is equal in size

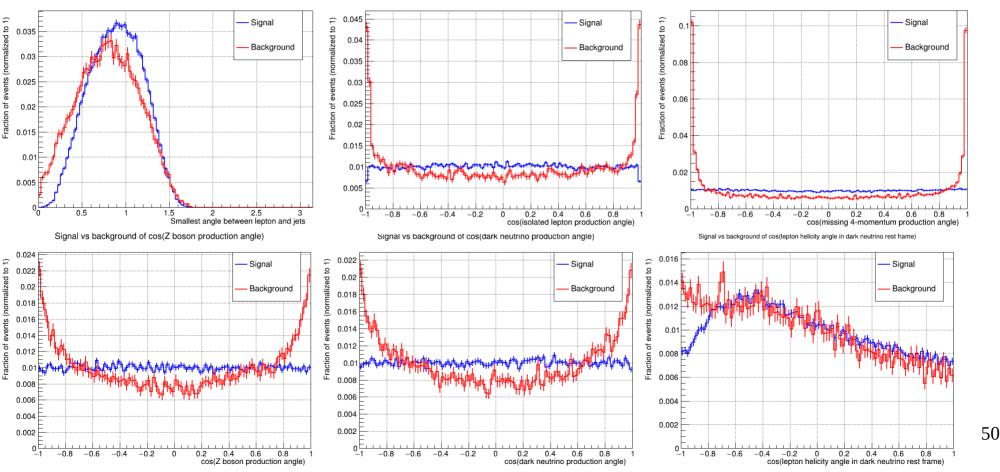

Lepton/missing energy distribution


m=100 GeV, (+0.8, -0.3) beam polarization

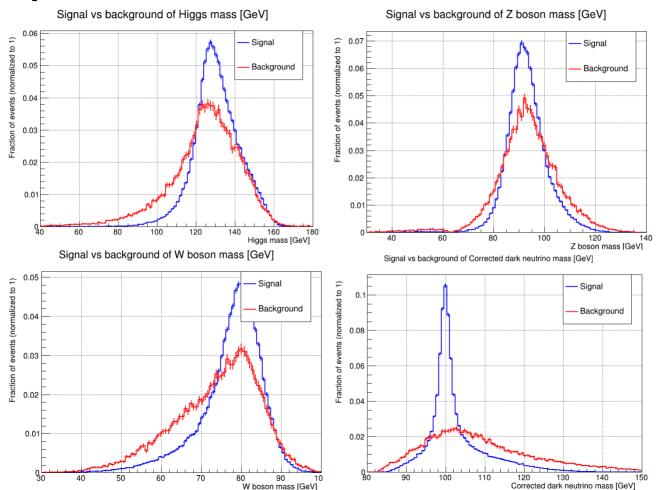
Machine learning output

- Confirm that BDT is not overtrained
- Find optimal BDT cut value to maximize significance

BDT parameter distributions - energies



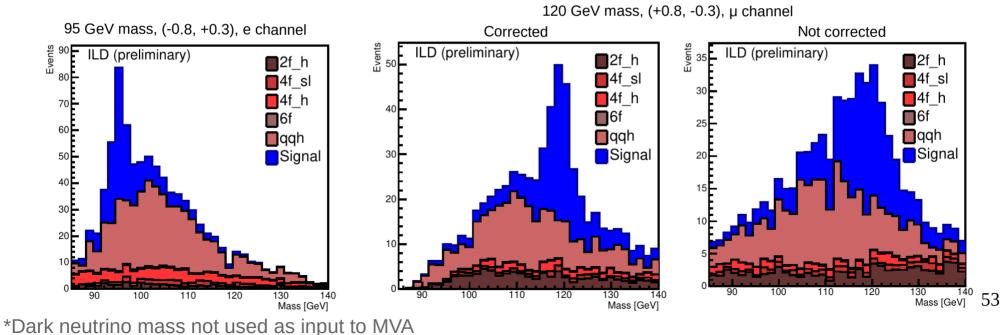
BDT parameter distributions - angles


Signal vs background of Smallest angle between lepton and jets

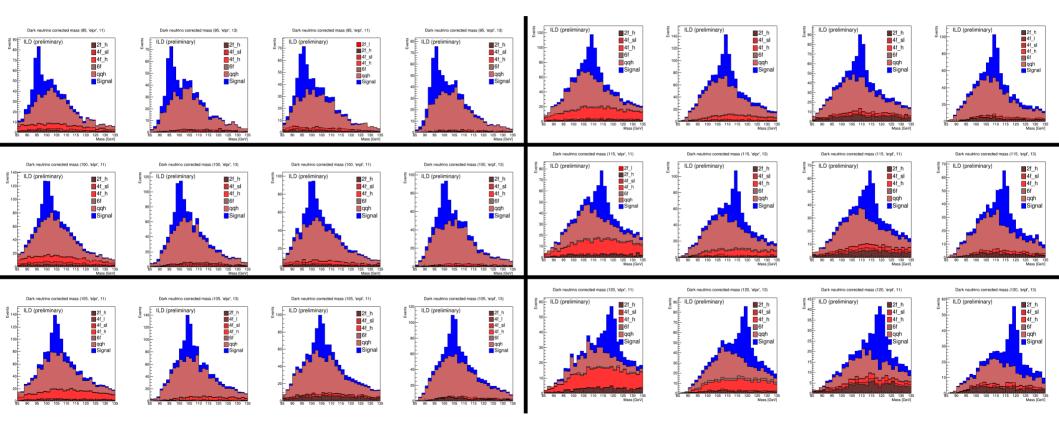
Signal vs background of cos(isolated lepton production angle)

Signal vs background of cos(missing 4-momentum production angle)

BDT parameter distributions - masses

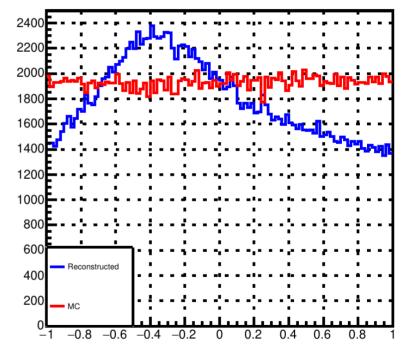

Example cut table for dark neutrino

		Total signal	Total background	Significance	2f_l	2f_h	4f_l	4f_sl	4f_h	6f	qqh
	No cuts	1396	136859842	0.12	12982897	77324421	10379315	19163106	16800470	1278	208355
	Pre-selection	1233	30132034	0.22	7366002	1606336	7651845	13260215	220833	872	25932
1% branching ratio	leptype == 11	627	14973089	0.16	1184642	1402269	4919234	7252824	198385	514	15221
100 GeV	elep/50. + emis/100. < 1	580	1136651	0.54	44637	248305	504438	192462	139969	415	6425
	0.8 < mvalep	482	557011	0.65	28048	36926	348278	123436	16772	335	3217
(-0.8, +0.3)	(180. < mvis) && (mvis < 225.)	438	235510	0.90	13427	17309	126473	67151	8377	220	2553
Electron channel	0.007 < y34	376	19834	2.65	79	1762	298	9504	5855	200	2136
	3 < min_n	357	10234	3.47	0	920	1	1726	5458	171	1957
	(15. < mis.P()) && (mis.P() < 45.)	325	3498	5.26	0	256	0	671	1131	30	1410
	MVA cut	242	825	7.41	0	56	0	59	146	13	552
		Total signal	Total background	Significance	2f_	l 2f_ł	ח 4f_	4f_sl	4f_h	6f	qqh
	No cuts	941	66651497	0.12	10314870	45672588	6114301	2839022	1570051	260	140405
1% branching ratio	Pre-selection	891	12565351	0.25	5696748	979693	3 4109167	1739683	22431	194	17434
120 GeV	leptype == 13										
	iept)pe ie	448	6449265	0.18	4803207	7 116849	976723	542562	2613	45	7267
120 Gev	elep/70. + emis/90. < 1	448 434	6449265 609993	0.18 0.56	4803207 79961					45 40	7267 3172
(+0.8, -0.3)						30687	7 461188	32974			
(+0.8, -0.3)	elep/70. + emis/90. < 1	434	609993	0.56	79961	30687 19446	7 461188 5 433438	32974 29481	1971 1301	40	3172
	elep/70. + emis/90. < 1 0.6 < mvalep	434 431	609993 561464	0.56 0.57	79961 74804	30687 19446 16091	7 461188 5 433438 1 186398	32974 29481 24018	1971 1301 1049	40 39	3172 2956
(+0.8, -0.3)	elep/70. + emis/90. < 1 0.6 < mvalep (160. < mvis) && (mvis < 220.)	434 431 406	609993 561464 290455	0.56 0.57 0.75	79961 74804 60239 432	30687 19446 16091	 7 461188 5 433438 1 186398 0 1067 	32974 29481 24018 9535	1971 1301 1049 900	40 39 23	3172 2956 2636
(+0.8, -0.3)	elep/70. + emis/90. < 1 0.6 < mvalep (160. < mvis) && (mvis < 220.) 0.004 < y34	434 431 406 381	609993 561464 290455 16966	0.56 0.57 0.75 2.89	79961 74804 60239 432	30687 19446 16091 2 2630 0 747	 7 461188 5 433438 1 186398 1 1067 7 C 	3 32974 29481 24018 9535 742	1971 1301 1049 900 693	40 39 23 22	3172 2956 2636 2380


52

Mass distributions

- Corrected mass: $m_{ND} m_W + m_{WO}$
- W boson jet momentum error dominant for dark neutrino reconstruction \rightarrow error removed in correction


Mass distributions

Potential improvements

- Lepton helicity angle in dark neutrino rest frame is incorrectly reconstructed
- Slight increase of negative angles
- Caused by error in jet clustering
 - W and Z jets are mixed
- Improved jet clustering algorithms crucial for future collider experiments

