Global EFT fits for future lepton colliders

Eleni Vryonidou University of Manchester

LCW2024 9/7/2024

Effective Field Theory

Effective Field Theory reveals high energy physics through precise measurements at low energy.

EFT pathway to New Physics

Global nature of EFT

Global fit Setup

Accurate predictions for the SM and the EFT

SM: (N)NLO QCD + NLO EW

EFT: NLO QCD, linear and quadratics, with SMEFT@NLO NNPDF4.0 no top

Theory **Experimental data**

445 data points from: Higgs, top, diboson (LHC) & EWPO (LEP).

Inclusive and differential: mostly parton level

Experimental uncertainties and their correlations as provided by experiments

Giani, Magni, Rojo arXiv:2302.06660

SMEFIT

Methodology **I** *J* Output

Nested Sampling for quadratic fits Analytic solution for linear fits Faithful uncertainty estimate Avoid under- and over-fitting, validated on pseudo-data (closure test)

Fit reports with bounds on coefficients, posterior distributions, PCA, Fisher information Constraints on New Physics scale Fit results can be used to bound specific UV complete models

E.Vryonidou LCWS2024

Experimental input

SMEFiT3.0 Celada, Giani, Mantani, Rojo, Rossia, Thomas, EV, ter Hoeve arXiv:2404.12809

SMEFiT2.0: Ethier, Maltoni, Mantani, Nocera, Rojo, Slade, EV and Zhang arXiv:2105.00006

LEP &

LHC

Experimental input

SMEFiT3.0 Celada, Giani, Mantani, Rojo, Rossia, Thomas, EV, ter Hoeve arXiv:2404.12809

SMEFiT2.0: Ethier, Maltoni, Mantani, Nocera, Rojo, Slade, EV and Zhang arXiv:2105.00006

LEP &

LHC

Experimental input

SMEFiT3.0 Celada, Giani, Mantani, Rojo, Rossia, Thomas, EV, ter Hoeve arXiv:2404.12809

SMEFiT2.0: Ethier, Maltoni, Mantani, Nocera, Rojo, Slade, EV and Zhang arXiv:2105.00006

LEP &

LHC

Which operators?

Flavour assumption:

$U(2)_q \times U(3)_d \times U(2)_u \times (U(1)_\ell \times U(1)_e)^3$ + Yukawa of bottom, charm and tau

50 degrees of freedom

Which operators?

Flavour assumption:

 $U(2)_q \times U(3)_d \times U(2)_u \times (U(1)_\ell \times U(1)_e)^3$

+ Yukawa of bottom, charm and tau

50 degrees of freedom

Current global fit results

- Bounds varying between operators
- Most Wilson coefficient bounds below 1 for Λ=1 TeV
- Quadratic terms important
- Least constrained coefficients are 4-top operators

arXiv:2404.12809

E.Vryonidou and the CWS2024 8

Current global fit results

- Bounds varying between operators
- Most Wilson coefficient bounds below 1 for Λ=1 TeV
- Quadratic terms important
- Least constrained coefficients are 4-top operators

arXiv:2404.12809

E.Vryonidou and the CWS2024 8

Current global fit results

- Bounds varying between operators
- Most Wilson coefficient bounds below 1 for Λ=1 TeV
- Quadratic terms important
- Least constrained coefficients are 4-top operators

arXiv:2404.12809

E.Vryonidou and the CWS2024 8

How about the HL-LHC?

- HL-LHC will collect 3000ab-1 over the next 20 years
- Any future project will come after that
- How will the constraints look at the end of the HL-LHC?

E.Vryonidou et al. e

Constraints at the HL-LHC

- We project all Run II datasets: one for each process and final state
- Scaling of uncertainties:
	- Statistical ones scaling with Luminosity
	- Systematics reduced by a factor of 2
- Explore relative improvement compared to current LHC fit
- We see an improvement ranging from 20% to a factor of 3 in the marginalised fit
- Improvement also through marginalisation
- No dedicated binning: Expect further improvement over LHC due to access to statistically limited high energy tails

arXiv:2404.12809

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-4})$, Marginalised

The future

The future

E.Vryonidou LCWS2024 11

Future circular lepton colliders

Future Circular Colliders

What will the FCC-ee measure?

- EWPOs at the Z-pole
- Light fermion pair prediction
- Higgsstrahlung and VBF
- W boson pair production
- Top-quark pair production (365GeV)

Uncertainty projections from Snowmass study: arXiv[:2206.08326](https://arxiv.org/abs/2206.08326)

See also Jorge's talk on Monday

Significant improvement for:

- gauge operators (up to 30 times)
- 2-fermion operators (up to 50 times)

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-4})$, Marginalised

FCC-ee: Energy Runs & CEPC

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-2})$, Marginalised

Significant impact of 240 GeV run, 365 GeV run also helps Very similar results for CEPC

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-2})$, Marginalised

arXiv:2404.12809

E.Vryonidou 14

Fisher information

- Fisher information shows which process gives more sensitivity for a given operator
- Proxy for a linear individual fit
- FCC-ee dominates nearly all operators except for 4-quark operators, only accessible at in pp collisions (tree level)
- Global fit picture more complicated due to correlations
- Both Z-pole run and run at 240 GeV important to pin down 2-fermion and gauge operators

What do we learn from global fits?

Bounds on new physics scale vary from 0.1 TeV (unconstrained) to 10s of TeV. Bounds depend on:

- the operator
- assumption of a strongly or weakly coupled theory
- individual or marginalised bounds (reality is somewhere in-between)
- linear or quadratic bounds

What do we learn from global fits?

Bounds on new physics scale vary from 0.1 TeV (unconstrained) to 10s of TeV. Bounds depend on:

- the operator
- assumption of a strongly or weakly coupled theory
- individual or marginalised bounds (reality is somewhere in-between)
- linear or quadratic bounds

From SMEFT to the UV

Global fit constrains parameters of UV models

- Automate chain with final output constraints on the UV parameters
- Simplest case: single-field extensions of the SM de Blas arXiv:[1711.10391](https://arxiv.org/abs/1711.10391)
- Assume mass, constrain the coupling or vice versa

ter Hoeve, Magni, Rojo, Rossia, EV arXiv: 2309.04523

What can we learn from these fits?

ter Hoeve, Magni, Rojo, Rossia, EV arXiv: 2309.04523

Automated constraints on UV models (also 1-loop and multiparticle models) from global EFT fit

Current mass constraints on single particle extensions: 1TeV to 10TeV

Best constraints for models modifying EWPOs, worst for those only changing 4-top operators

What can we learn from these fits?

ter Hoeve, Magni, Rojo, Rossia, EV arXiv: 2309.04523

Automated constraints on UV models (also 1-loop and multiparticle models) from global EFT fit

Current mass constraints on single particle extensions: 1TeV to 10TeV

Best constraints for models modifying EWPOs, worst for those only changing 4-top operators

From SMEFT to the UV

arXiv:2404.12809

- Large improvements in mass reach for models modifying EWPOs at the FCC
- Bounds reaching 100 TeV for some models at the FCC-ee
- HL-LHC improving models generating 4-quark operators (expect better improvement with dedicated HL-LHC analysis)

Conclusions

- SMEFT is a consistent way to look for new interactions
- Global fits results already available: important to combine as many processes as possible to extract maximal information
- Eventually global fit results give us a clear indication of the scale of potential new physics and the reach of future colliders
- Significant improvements in New Physics reach at the HL-LHC and especially at future circular lepton colliders
- Plan to extend this to other future projects

https://lhcfitnikhef.github.io/smefit_release/previous_releases/smefit30.html

Thank you for your attention