X-LAB: A VERY HIGH-CAPACITY X-BAND RF TEST STAND FACILITY AT THE UNIVERSITY OF MELBOURNE

<u>Matteo Volpi on behalf of the X-LAB group:</u>

S. L. Sheehy, P. J. Giansiracusa, R. P. Rassool, G. Taylor, P. Pushkarna, (The University of Melbourne, Melbourne, Victoria), R. Dowd, E. Tan (AS - ANSTO, Clayton), M. Cherrill (University of South Australia), RF CERN group.

The 2024 International Workshop on Future Linear Colliders (LCWS2024) 8−11 Jul 2024 The University of Tokyo, Japan

X-band Laboratory for Accelerators and Beams (X-LAB)

- A new laboratory is currently operational at the University of Melbourne (UoM)
 - This facility represents the first high-power, high-frequency accelerator laboratory in the Southern Hemisphere. It is dedicated to testing high-gradient structure prototypes and RF components for CLIC, as well as engaging in ultra-precision manufacturing.
 - The primary objectives include designing and developing new accelerator technology. This project aims to provide local researchers and students with the opportunity to make significant advances in accelerator design.

CERN layout before the shipping

At the heart of the project is the CERN X-band (~12GHz) high power equipment including modulator and klystron (left) feeding RF power to two copper accelerating structures (right).

- Half of CERN Xbox-3 has been brought to Australia
- Reassembled in the old Betatron Bunker in the School of Physics at the University of Melbourne
- 2x 6 MW 12GHz Klystrons + Modulators operating in tandem to feed 2 test stands
- 400Hz repetition rate

XLAB layout history

MeL-BOX Layout

Schematic of the X-lab setup for experimental structure testing and conditioning CLIC prototype structures.

Interlock System - Triggers

- Radiation monitors
- RF reflections
- High vacuum activity
- Open doors
- Key-based interlock the system cannot be started if the tunnels are open
- E-Stop
- Temperature
- □ Chillers/flow meter

CLIC prototype structure conditioning and more..

- Each RF breakdown causes a destructive sideways kick to the particle bunches. This is why accelerating structures are conditioned - or 'broken in' - before operation.
- The process of conditioning requires a variation of input pulses as gradient and pulse width to ensure reliability of operation to attain the lowest possible breakdown rate.
- Before installing the structures, we are conditioning the lines. Main components:
 - RF windows
 - Pulse Compressor (PC)
 - Stainless steel loads

TD24 structure so far reached 40.45 MW (97.9 MV/m)

Klystron and RF window conditioning-Gain curves

NOTE: The new **RF windows** installed after the klystron have also been conditioned. We encountered some issues with one of them during the power ramping conditioning algorithm. By using the **'pulse length rise'** instead of the power, we were able to recover the window.

Line3- history plot

Conditioning limited by the Pulse Compressor breakdowns

Peak Power ~34MW 1.8 us pulse width 60 ns flat-top 100Hz repetition rate PC BDR limit threshold 5x5E⁻⁵ ~4000 BDs

We are aware of the problem and already have a solution that needs to be implemented as soon as possible.

Line4- history plot

Pulse Compressor and load breakdowns

Peak Power ~40MW 2 us pulse width 70 ns flattop 100Hz BDR threshold 5x5E⁻⁵ PC4 BDs ~2000

Conditioning summary

Component	Pulse Width	Peak Power [MW]	Max Rep. Rate [Hz]	NOTE
KlyC	2 US	6.2	100	
KlyD	2 US	5.5	100	"Old" klystron
RF window - C	2 US	6.2	100	"Pulse length ramping" conditioning
RF window - D	2 US	5.5	100	
PC-3	1.8 us	34	100	Breakdown -> new cup required
PC-4	2 US	40	100	Conditioning going on
LOAD 3	1.8us	34	100	Conditioning limited by PC-3 BDs
LOAD 4	1.8us	40	100	Conditioning going on

Nex steps and long-term goals

Bead pull setup

Check and tune the two TD24 structures (if required).

N1 Refore&After High Power Te

- VNA + external trigger (pulse generator)

1. 6 . .

- Step motor controlled by an Arduino (triggered)
- Fishing wire alignment
- Temperature control (chiller)
- Nitrogen system

Diagnostic Systems

- Directional couplers
- Faraday cups RadiaBeam 35 MeV

BLMs

- Optical fibre 1 mm quartz fibre with Sens l/Hamamatsu SPMs
- Scintillator Based Libera BLM
- PIN diodes
- Vacuum Gauges
- □ Very few channels remain on the NI-PXI
- Increasing diagnostic capacity, parallel system with faster digitizers
 - Max Sample Rate 10GS/s
 - Resolution 12 bits

Novel diagnostics using Cherenkov radiation*

- Transport of radiation to detector challenging
 Optical fibres enable transport under geometric constraints
- CR intensity in fibres proportional to incident charge
 - Already employed as distributed Beam Loss Monitors
- Explore application to
 - Iongitudinal diagnostics
 - breakdown science
 - and bunch profile reconstruction

Paarangat Pushkarna, PhD student & AS - ANSTO

Spectrometer

Uppsala/CLIC X-band Spectrometer (UCXS) Spectrometer was installed at "XBox1" 12GHz 50 MW test stand @CERN

Energy

Marek Jacewicz and Uppsala accelerator group

The Future of XLAB – Accelerator Physics Lab

- Build on the RF test stand
- Develop hands-on skills in accelerator systems
- Compression cavity
 - DRX Works
 - 3GHz
- Electron Gun
 - DRX Works
 - 100 kV Photogun
 - □ 12.3 MV/m
 - Copper cathode
 - Illumination with a 1µJ 266 nm 1fs laser pulse can produce
 1 nC electron hunches
 - 1 pC electron bunches
 - Looking for advice on a suitable laser

Local Manufacturing

- Australian National Fabrication Facility (ANFF): manufactured a W90 to waveguide adaptor
 - "This project has been a good chance to review some of our processes and equipment gaps."
- They have been using monocrystal diamond tooling
 - surface roughness ~Ra 7nm (best measured so far)
 - tolerances within 1µm
- Be able to make a disc? Not sure, but that our overall aim for the future is to have that capability.
 - They are refurbishing the space for the new equipment.
 - New diamond turning machine
 - Advanced milling training courses

Specification

ANFF-SA were tasked to fabricate 1 W90 adaptor flange from 316LN to drawing specification 2021 052 F P001.

Fig 1. Images of finished part (front and back).

Conclusion and future plan

- An X-band test stand has been commissioned at the University of Melbourne (UoM) to serve as the central infrastructure for further development in the new X-LAB.
- Both lines have almost been fully conditioned. The next step is to start conditioning the structures.
- Diagnostic beam systems are currently under development.
- You are welcome to visit the facility! Help and support are more than welcome!

>X<-LVB

Beamline

- Build on the RF test stand
- Develop hands-on skills in accelerator systems

S. Williams (2023). Simulations of a compact beamline utilising high gradient X-band RF accelerating cavities at the University of Melbourne X-LAB [PhD Thesis]. The University of Melbourne

MEL-BOX Line4 GUI

Denote Tesla Wieden Like	F Settings A	r Settings B
iperate loois Window Heip		Phase Program B
MAIN Load Config Save Config Interlock? Vacuum restart Level [mbar]	Settings B RF On Matter Feedb	Output Master Output Slave Pulse Width 0.264132 0.129501 2E-6
t line2 t line3 t line2 t line3 t l	✓ PKRA ✓ ✓ PLRA ✓ ✓ DL ✓ ✓ DC_UP ✓ ✓ PKR8 ✓ ✓ PKR4 ✓ ✓ PKR5 ✓ ✓ PKR6 ✓ ✓ PKR4 ✓ ✓ PKR8 ✓ ✓ PKR4 ✓ ✓ PKIA_amp ✓ ✓ PKIA_amp ✓ ✓ PKIA_amp ✓ ✓ PKIA_smp ✓ ✓ PKIB_smp ✓	0.264132 0.129601 2E-6 waster Power (W) Stepoint Master Max 4.99271E+6 SE+6 k on? Phase delts Slave Phase offset Master -62 0 con? Setpoint DUT 37.02M PID Slave Amp PID Slave Phase PID Slave Amp PID Slave Phase PID DUT Kc E-8 E-0 Ti Td Td Td Td Td Td Td Td Image: Set State St

X-band High Power RF Window

- Compact RF window with TW in ceramic was designed at CERN to decrease the electric field strength on ceramic. At Canon, it is now commercialized as a separate RF device.
 E-field
- VNA measurements before installation
 - S₁₁ ; S₂₂~-30 dB attenuation
 - **S**₁₂ ~ 0.05 dB transmission
- Vacuum test : ~10⁻¹⁰ mbar

"Pulse length" line C conditioning

- To address such surfaces, we recondition the RF circuit using the following steps:
 - Reduce the pulse length to a level that allows for continuous high-power operation without frequent breakdowns at **10 Hz** (e.g., 0.3 μs). Also, decrease the pulse repetition rate since the vacuum pressure remains high after breakdown and takes time to decrease.
 - 2. Maintain conditioning for 30 minutes.
 - **3.** Increase the pulse length by 0.1 μs and continue conditioning for 5 minutes. In our case, we use approximately a 20 ns step.
 - 4. Repeat step 3 until the pulse length reaches the same value as before this procedure.
- Gradually increase the pulse repetition rate (e.g., 1 Hz per minute). Conditioning is in progress, and vacuum tests confirm that the windows aren't broken.

24

Cherenkov signal improvement studies

- Propagation in fibre distorts CR signal
- Using multimode fibres increases signal
 But introduces modal dispersion
- Vary beam incidence angle to improve intensity
- Examine dispersion compensation techniques
- Seek an intensity vs dispersion trade-off

