Cold Copper High Gradient Single-Cell Structure Tests

Emilio Nanni LCWS 2024 7/10/2024

Acknowledgements

SLAC

Muhammad Shumail Xueying Lu Greg Le Sage Mitchell Schneider Emma Snively Sami Tantawi Valery Dolgashev

Zenghai Li

Dennis Palmer Garrett Mathesen **Charlotte Wehner** Julian Merrick Bradley Shirley Mamdouh Nasr

Ankur Dhar

LANL

Evgenya Simakov Muhammed Zuboraj Ryan Fleming **Dmitry Gorelov** Mark Middendorf

CERN

Victoria Madeleine Bjelland Walter Wuensch

Radiabeam

Ronald Agustsson Robert Berry Amirari Diego Alex Murokh NG Matavalm A Talignani **PR** Carriere

Scaled Design of Low-Beta or Reduced Phase Adv. Struc.

• Original design was for low-beta protons – efficient with relativistic electrons and appropriate cell to cell phase advance

Schneider, Mitchell, et al. "High gradient off-axis coupled C-band Cu and CuAg accelerating structures." *Applied Physics Letters* 121.25 (2022).

High Gradient Performance of Cu and CuAg Cavities

- Utilized C-band test stand at LANL
- Each structure processed for O(100M) pulses

How does this behavior extend to cryogenic temperatures?

Characterization at 77K

- Improvement of 2.5 X for Cu and 2.9X for CuAg(!)
- 2.9 is consistent of Cu sample measurements at UCLA (may be material batch specific)

LCWS 2024

Parameter	CuAg	Cu		
Temp	77K			
Frequency	5.71455 GHz			
Length	1.58 cm			
β	2.97	2.683		
Q ₀	29,695	25,697		
Rs ($M\Omega/m$)	352	305		
Ea MeV/m/√ <i>MW</i>	141	131		

SLAC

Radiabeam

SLAC 8 L ion pump+ 3. DC (RB) valve 11. Spiral load 9. Window 3. DC (SLAC) 8. WG pump out port 9. Window 10. Planar hybrid Burst Disk + 20L ion pump+ valve 3. DC 4. SS Long WG (SLAC) 5. SS short WG 2. Cavity CuAg 1. Cavity Cu Faraday Cups

Typical Performance

• Measured and modeled response for CuAg Cavity

Structure Processing

- ~20M Pulses (two weeks)
- Increased pulse length 400 ns, 700 ns, 1 microsecond

²³ E-field Defect types classification

- 1. Deep craters(observed only in **Hi-E** regions)
- 2. Spatter (observed in Hi-E but not significantly on Low-E regions)
- 3. Speckling (Observed in Low-E regions only)
- 4. Pitting (Observed in **Hi-E** & **Low-E** regions)

³¹ High B region - OFE

 Scratch from fabrication concentrates pits along scratch? *Matavalm, Talignani, Carriere*

²⁵ OFE High filed break down quantitative analysis

- Total number of break down events counted: 98 ± 10
- Surface area of high field: 94.12mm²
- <u>1.04/mm²</u> breakdown counts are observed at high field region (top 1.6% of electric field considered as high field)

CuAg cavity versus the Cu cavity 1.35 versus 1.04 BD/mm²

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

Next Steps

NiChrome Coating for Damping

- Formed with multi-layer electroplating
- Rough lossy conductor
- NiChrome (at 77K) coating conductivity 100X lower than copper at room temperature
- Conductivity confirmed at 77K with multi-layer coating with diffusion from hightemperature heat treatment

NiChrome Conductivity After Hydrogen Braze

- Unfired sample seemed to maintain low conductivity
- Fired samples started lossy, but approached Copper values as temperature rose

LCWS 2024

Visual observation suggests some of the coating may have degraded in the firing

Sample @ 77K	Q0	Qe	β	Qs	σ		
Fired #1	44826	214023	0.209	35092	3 MS/m		
Fired #2	32783	206483	0.159	27252	1.8 MS/m		
Unfired	19072	208524	0.09	17056	706 kS/m		
Cu (77 K) ~500 MS/m							

NiChrome High Voltage DC Testing

- Normal operation NiChrome only sees low fields
- Breakdowns can result in HOM coupling
- CERN to test with strong DC field on film to observe if film and vacuum preserved

Implementation of Slot Damping

Need to extend to 40 GHz / Optimize coupling / Modes below 10⁴ V/pC/mm/m NiCr coated damping slots in development

TM120 (15.67 GHz)

Kick Factor * Q

Conclusions

- Achievable gradient, breakdown rate and pulse length at C-band are promising
- How do we incorporate damping?
- How improve manufacturing of structures?
- How do meter scale structures perform?
- What is the optimal aperture and phase advance?

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

Questions?

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

Additional Material

SLAC

Ongoing Technological Development

High Accelerating Gradients Cryogenic Operation

Modern Manufacturing Prototype One Meter Structure

Integrated Damping with NiChrome Coating

Additively Manufactured Spiral Load

Tested at Radiabeam

SLAC

LCWS 2024

- 3D printed in stainless steel (inspired by CERN)
- First version is only air cooled

25

Cell Optimization to Reduce Alignment Requirements

2) Structure of optimal phase advance phase advance of interest:
180°, 135°, and 120°.

Plausible choice:

- 135 deg/cell, t=1.75 mm
- a=3.55 mm

Disk T=2.5mm	180°	135°	120°
Aperture radius (a)	2.624 mm	3.33 mm	3.00 mm
Gap width (g)	21.06 mm	15.00 mm	12.54 mm
Quality factor (Q_0)	13,846	11,625	10,624
Shunt impedance (R_s)	114.2 <i>M</i> Ω/ <i>m</i>	114.1 $M\Omega/m$	114.1 $M\Omega/m$
$max(E_s/Gradient)$	2.00	2.00	1.98
Disk T=1.75	180°	135 °	120°
Aperture radius (a)	2.74 mm	3.55 mm	3.26 mm
Gap width (g)	21.32 mm	14.84 <i>mm</i>	12.76 mm
Quality factor (Q_0)	13,883	11,614	10,773
Shunt impedance (R_s)	114.3 <i>M</i> Ω/ <i>m</i>	114 . 1 <i>M</i> Ω/ <i>m</i>	114.0 <i>M</i> Ω/ <i>m</i>
$max(E_s/Gradient)$	2.00	2.01	2.00
Disk T=1.0 mm	180°	135°	120°
Aperture radius (a)	2.75 mm	3.63 mm	3.41 mm
Gap width (g)	21.06 mm	15.10 mm	12.74 mm
Quality factor (Q_0)	13,621	11,674	10,795
Shunt impedance (R_s)	114.1 <i>M</i> Ω/ <i>m</i>	114.1 <i>M</i> Ω/ <i>m</i>	114.2 <i>M</i> Ω/ <i>m</i>
$max(E_s/Gradient)$	2.00	2.00	1.99

Cell Detuning

Cell-to-cell phase advance: 135 deg

- Cell length: 19.682 mm
- Detuning using iris "thickness"
- Exceeds detuning bandwidth needed for dipole mode

LCWS 2024 Z. Li

SL

RF Network and Analytical Cascading

- Reduced phase advance structure has larger aperture but needs new manifold
- Two fold symmetry possible by bifurcating feed

- The analytical results show excellent uniformity in the amplitude and phase of the 14 cavities fed by a cascade of seven of these networks terminated with a short.
- The reflection coefficient at the entrance of the network (Γ_7) is less than -60 dB.

