

9 July 2024, 12:00 - 12:20

X-band dielectric assist accelerating structure

<u>Daisuke Satoh^{1,2}</u>, Tetsuo Abe², Mitsuo Akemoto², Shuji Matsumoto², Toshikazu Takatomi², Yasuo Higashi², Toshiyasu Higo²

National Institute of Advanced Industrial Science and Technology (AIST)
 High energy accelerator research organization (KEK)

International Workshop on Future Linear Colliders (LCWS2024)

[Outline]

- Operation principle of DAA structure
- Current issues and initiatives
- Design, fabrication, and cold test of X-band DAA structure
- High power test (2024/6/25 \sim)
- Summary & Research plan

<u>D</u>ielectric <u>a</u>ssist <u>a</u>ccelerating structure, DAA

[Dielectric assist accelerating (DAA) structure]

[Conceptual diagram of DAA structure]

Dielectric cylinder

Dielectric disk

- DAA consists of dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure.
- Higher order TM_{02n} mode is used for beam acceleration.

→ Wall loss on conducting surface is drastically reduced in DAA structure

[Current issues and initiatives]

 \bigcirc High shunt impedance $Z_{sh} \sim 600 \text{ M} \Omega / \text{m}@5.712 \text{ GHz}$ was realized.

E_{acc,max} ~ 11 MV/m @DLC-coating MgO cells is limited by multipactor and discharge.

Toward higher gradient DAA structure

【 (i) Understanding discharge phenomena 】

X

- Observation of discharge phenomena in DAA structures using (high-speed and Hyperspectral) cameras.
- Update of the internal structure based on the estimation of discharge locations and causes to achieve higher gradient.

【(ii) Short pulse excitation 】

High gradient was realized by short pulse dielectric disk accelerating structure.

Verify whether higher E_{acc} excitation is possible by inputting RF pulses shorter than the filling time.

[RF Design of X-band DAA structure]

Optimize the structure for high E_{acc} by deepening the physical understanding of vacuum discharge in DAA structures.
 We considered a DAA#X1 in which all closed regions within the DAA structure can be optically observed from the outside.

[Basic structure of DAA#X1]

- DAA#X1 is a 2-cell DAA structure.
- The DAA#x1 was designed to be introduced into the chamber.
- Many holes works as vacuum ports and observation ports

Simulation results

[Fabrication and cold test of DAA#X1]

[Dielectric cells]

The tolerance of the dielectric cell was set to finish at a higher frequency than 11.424 GHz for frequency tuning.

[Assembled DAA#X1]

[Results of low power test @ DAA#X1]

Parameters	Simulation Results	Measured Results
f_0	11.4526 GHz	11.4519 GHz
Q_0	59,000	60,000

[Fabrication and cold test of DAA#X1]

[Coupler feed Assembly]

[Results of low power test @ DAA#X1]

- DAA#X1 couples with the TM_{01} mode of the circular waveguide on the axis.
- The f_0 was tuned by removing a portion (d) of the copper end plate.

The distribution of the EM field changed due to the alteration of the end plate shape, leading to an increase in conductor loss and a decrease in Q_0 . Under investigation

[Bead pulling measurement of DAA#X1]

 $\begin{bmatrix} E_{acc} & \text{field along beam axis} \end{bmatrix}$

8

[Setup for the high-power test in Nextef2/Shield-B] [Setup in Nextef2/Shield-B] [RF pickup system]

Loop antenna

 E_{acc} is measured using a loop antenna from the side holes.

A hyperspectral camera are used to measure emission spectra.

[High-power (HP) test in Nextef2@KEK : $6/25 \sim$] [Result : Pin = 90 kW, 100 ns, 5 Hz] [Side view of DAA#X1]

The color CMOS cameras detected blue luminescence.

- The E_{acc} in DAA#X1 was unstable even with input power of a few kW.
- The time constant for E_{acc} bildup and decay are much shorter than the filling time of DAA#X1. \rightarrow multipactor or discharge may be occurring in the DAA#X1.
- The E_{acc} is still limited at about a few MV/m (2024/07/07).
 - * This trend is similar to the results for the prototype of DAA@C-band without DLC coating.

[Luminescence in DAA#X1:0.6 MW, 200 ns, 50 Hz] [top] [side] [bottom:coupler] [bottom:coupler]

Edge of the beam hole

Dielectric

- Significant luminescence was observed slightly inside the beam holes as the input power increased.
- . The luminescence intensity observed from the side hole is much lower than that from the center area.
- III. A hyperspectral camera measured the luminescence spectrum from the vacuum holes (side and bottom), confirming **a main peak at a wavelength of 435 nm**.

III

[Discussion : Luminescence in DAA#X1]

- The representative peak wavelengths of the luminescence from the DAA#x1 was match to that of the cathodoluminescence spectrum in sapphire.
- It is most likely that the luminescence is caused by impurities in the sapphire due to **electron impact by multipactors**.
- Multipactors may be occurring (1) between dielectric disks near the beam axis and (2) inner cylinder surface of end cell, etc... considering the luminescence intensity.

- To achieve a higher gradient in the DAA structure, high-power tests were initiated on June 25, 2024, to deepen our understanding of the physical phenomena within the DAA structure.
- During the high-power test, blue luminescence was detected by the color CMOS cameras. → It is highly likely that this luminescence is caused by impurities in the sapphire due to electron impacts from multipactors.
- Multipactors may be occurring between the dielectric disks near the beam axis and the inner cylinder surface of the end cell.

【Research plan】

- High-power tests will continue to verify the conditioning effects of DAA structures and to measure temporal changes in discharge and multipactor phenomena.
- The locations of multipactors will be estimated in detail by observing it from various angles.
- Updates to the internal structure will be made based on these identified locations and causes of multipactor, with the aim of achieving a higher gradient.

[Acknowledgment]

This work has been supported by [MEXT Development of key element technologies to improve the performance of future accelerators Program] Japan Grant Number JPMXP1423812204.

Thank you for your attention.

Additional slides

[2] D. Satoh, et. al., PRAB 20, 091302 (2017)

 $|H_{\theta}(c_1)|$ in DAA structure is almost 1/4 that of pillbox cavity \rightarrow The wall loss on conducting cylinder is drastically reduced !

[Diamond like carbon coating on DAA]

DLC coating is known to reduce secondary electron yield while not increasing dielectric losses. H. Xu et al., PRAB 22, 021002 (2019).

[Secondary electron yield of MgO and DLC surface]

5 4 3 2 1 0 0 0.5 1 1.5 2 2 1 0 0 0.5 1 1.5 2 Ein (keV)

Succeeded in significantly reducing SEY of MgO !

- $E_{acc,max} = 11 \text{ MV/m} (@ T_{p} = 5.4 \ \mu \text{ s}) \text{ achieved.}^{[3]}$
- However, a large breakdown caused irreversible deterioration in accelerator performance.

[3] S. Mori, M. Yoshida, <u>D. Satoh</u>, PRAB 24, 022001 (2021)

[DLC coated dielectric cell & DAA structure]

Maintaining a high Q_0 value !

[High power test of DLC–DAA structures^[3]]

