We **reconstructed photons** from energy deposits by **transforming** particle reconstruction.

Particle-flow reconstruction with Transformer

Taikan Suehara¹, Paul Wahlen² ¹ICEPP, The University of Tokyo. ² IP Paris, ETHZ, ICEPP Intern

Background:

Due to the interaction between particles and matter, the initial energy of an incoming $\$

Network Architecture:

The architecture is heavily inspired by the original Transformer detailled in Attention

particle into a detector is scattered in hits located at different positions, forming a cluster. This renders the cluster of reconstructing the initial particle notoriously difficult and several algorithm, called Particle Flow Algorithms (PFAs), have been developped to tackle this.

is All you Need by Vaswani et al. (2017). **Mean Square Error** is used for continuous degrees of freedoms, whereas **Cross Entropy** is used for discrete quantities.

Hits are characterised by their positions in the calorimeters and energy deposits.

Clusters contain information of particles before passing through the detectors. These are:

- Its charge, C
- The absolute value of its PDG number, |*id*|
- Its energy, E_c
- Its direction, (n_x, n_y, n_z)

At each **iteration**, the model predicts the **next cluster** by using information contained in the hits and clusters from **previous iterations**. The process is stopped when an end of sequence token is predicted.

Decoder layer

Add & Norm

Feed

Forward

Information in hits and clusters is retrieved by the attention mechanism in the encoder and decoder layers. Each token is projected onto 3 vectors: the **Key**, the **Query** and the **Value**. During attention, tokens are updated as a weighted sum of the Values, with weights given by how well the token's Query are aligned with the Keys.

Methodology:

Using a network architecture first developped in language models, a Transformer, we are reconstructing particles using only the energy deposits and their positions in the calorimeters.

Results

- Models are tested against clusters generated by either a single or two photons
- Maximum accuracy is not achieved since photons can split into particles/antiparticles, etc...

Accuracies are calculated by a one-to-one comparison between overlapping predictions and labels

• **Single photons:** logarithmic distribution of 10 to 100 GeV

Conclusion

 Current architecture shows reasonable results with simplified datasets of clusters formed by one or two particles

Perspective of future work

particles in random directions. 100k events.

 2 photons: Fixed energy at 10 GeV, θ fixed at 85 degrees. φ random. The 2 photons are separated by an opening angle of 100 mrad.

- Increasing the complexity of the dataset using multiple taus or jets to form the clusters
- Focusing on predicting the correct numbers of clusters first, trying different architectures and hyperparameters.

More information and code can be found on the GitHub repository

Scan me!