
Classifying importance regions in Monte Carlo
simulations with machine learning

Raymundo Ramos
Quantum Universe Center, KIAS

(based on work with: M. Park (SEOULTECH) and K. Ban (KIAS))

International Workshop on Future Linear Colliders
Tokyo, Japan, July 10, 2024

1 / 24

From theory to discovery (or limits)

Experiment

Analysis Simulation

Theory

Compare

Discoveries Limits

no match

match

More diverse and more precise
experimental results.

Simulations have to keep up with
the complexity of experiments and
provide accurate predictions.

We need more powerful and
expensive computers! better

techniques for data analysis

2 / 24

From theory to discovery (or limits)

Experiment

Analysis Simulation

Theory

Compare

Discoveries Limits

no match

match

More diverse and more precise
experimental results.

Simulations have to keep up with
the complexity of experiments and
provide accurate predictions.

We need more powerful and
expensive computers! improved

techniques for data analysis

2 / 24

From theory to discovery (or limits)

Experiment

Analysis Simulation

Theory

Compare

Discoveries Limits

no match

match

More diverse and more precise
experimental results.

Simulations have to keep up with
the complexity of experiments and
provide accurate predictions.

We need more powerful and
expensive computers! improved

techniques for data analysis!

2 / 24

Complications along the way

▶ Several dimensions

▶ Multimodality

▶ Curved degeneracy

▶ …

3 / 24

Monte Carlo: brief review

𝑓(𝑥): Output of a comprehensive calculation with 𝑑-dimensional input 𝑥
▶ May become time consuming

▶ Likely to require lots of computational resources

To extract answers: Interpret 𝑓(𝑥) in relation to a probability density and
use Monte Carlo simulations.

•Monte Carlo (MC) integration in space Φ

𝐼[𝑓] = ∫
Φ

𝑑𝑥 𝑓(𝑥) = 𝑉Φ⟨𝑓⟩Φ, with 𝑉Φ = ∫
Φ

𝑑𝑥 ,

MC estimate (𝑁 events): 𝐸(𝐼) = 𝑉Φ𝐸(⟨𝑓⟩Φ), 𝐸(⟨𝑓⟩Φ) = 1
𝑁

𝑁
∑
𝑛

𝑓(𝑥𝑛)

Variance: 𝜎2(𝐸(𝐼)) = 𝑉 2
Φ𝜎2

Φ(𝑓(𝑥))/𝑁

4 / 24

Monte Carlo: brief review

•Variance reduction: stratified sampling

Reduce variance by partitioning the space:

Φ = ∑
𝑗

Φ𝑗, 𝑉Φ = ∑
𝑗

𝑉Φ𝑗

Usually, volumes of partitions are known and

𝐸(𝐼) = ∑
𝑗

𝑉Φ𝑗
𝐸(⟨𝑓⟩Φ𝑗

), 𝜎2(𝐸(𝐼)) = ∑
𝑗

𝑉 2
Φ𝑗

𝜎2
Φ𝑗

(𝑓(𝑥))/𝑁𝑗

Oversampling needed only in partitions with large variance

5 / 24

Remixing stratified sampling

Divide Φ according to contours of
𝑓(𝑥) (Lebesgue integration):

Φ𝑗 = {𝑥 ∣ 𝑙𝑗 < 𝑓(𝑥) ≤ 𝑙𝑗+1}.

Now 𝑉Φ𝑗
depend on the contours 𝑙𝑗

and 𝑙𝑗+1 and, in general, are subject
to estimation

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
x

100

200

300

400

f(x
)

𝐸(𝐼) = ∑
𝑗

𝐸(𝑉Φ𝑗
)𝐸(⟨𝑓⟩Φ𝑗

)

Fortunately, 𝑉Φ𝑗
and ⟨𝑓⟩Φ𝑗

are still independent:

𝜎2(𝐸(𝐼)) = 𝐸2(𝑉Φ𝑗
)𝜎2

Φ(⟨𝑓⟩Φ𝑗
)+𝐸2(⟨𝑓⟩Φ𝑗

)𝜎2
Φ(𝑉Φ𝑗

)+𝜎2
Φ(⟨𝑓⟩Φ𝑗

)𝜎2
Φ(𝑉Φ𝑗

)
(this is starting to look ugly)

6 / 24

Remixing stratified sampling with a neural network

▶ Neural networks (NN) as generic function approximators

▶ Useful when training a NN could be more efficient than passing
every single point through a heavy calculation

Main idea: train the NN to classify points according to contours

NN{x⃗}

{x⃗}1

{x⃗}2
...

{x⃗}n

Large set of n-dimensional
coordinates

The neural network encodes
the division of regions

It is not necessary to run
the function to know where
each x⃗ belongs

Evaluations of the neural network → determine 𝐸(𝑉Φ𝑗
), reduce 𝜎2

Φ(𝑉Φ𝑗
)

7 / 24

Remixing stratified sampling with a neural network

•𝐸2(𝑉Φ𝑗
)𝜎2

Φ(⟨𝑓⟩Φ𝑗
)

𝜎2
Φ(⟨𝑓⟩Φ𝑗

): reduced by partitioning, limited by contours of 𝑓(𝑥).
Only part where the number of evaluations of 𝑓(𝑥) is important
Inaccuracy to predict contours by NN can increase variance.

•𝐸2(⟨𝑓⟩Φ𝑗
)𝜎2

Φ(𝑉Φ𝑗
)

𝜎2
Φ(𝑉Φ𝑗

) reduced by evaluations of neural network.

•𝜎2
Φ(⟨𝑓⟩Φ𝑗

)𝜎2
Φ(𝑉Φ𝑗

)
Clearly the least important, reduced by reducing the other two.

8 / 24

Remixing stratified sampling with a neural network
Next question: How to divide the range of 𝑓(𝑥)?

▶ Infinite possibilities
▶ a few simple examples, choose limits on 𝑓(⃗𝑥) such that:

Ü Φ𝑗 with similar lengths 𝑉Φ𝑗

t Φ𝑗 with similar contributions to 𝐼Φ[𝑓(𝑥)]

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
x

0

50

100

150

200

250

300

350

400

f(x
)

0.0 0.2 0.4 0.6 0.8 1.0
CI (normalized)

0

50

100

150

200

250

300

350

400

f(x
)

9 / 24

Learn divisions of a function with multiple peaks

20 regions with similar contribution to value of integral

x1
15 10 5 0 5 10 15

x
2

15
10
5

0
51015

function value

0
5

10
15
20
25
30
35

15 10 5 0 5 10 15
x1

15

10

5

0

5

10

15

x 2

0

5

10

15

20

25

30

35

10 / 24

Learn divisions of a function with multiple peaks

20 regions with similar contribution to value of integral

15 10 5 0 5 10 15
x1

15

10

5

0

5

10

15

x 2

After first training
Uncertain
Misclassified

15 10 5 0 5 10 15
x1

15

10

5

0

5

10

15

x 2

After sixth training
Uncertain
Misclassified

After sixth training step: above 99% accuracy (100 000 test points).

11 / 24

Toy example: 7D function with large cancellation

𝑓(𝑥) = 100[𝑓+(𝑥) − 𝑓−(𝑥)] + 0.1𝑓bg(𝑥)

∫ 𝑓(𝑥)𝑑𝑥 = ∫ 0.1𝑓bg(𝑥) ≈ 0.1, on the cube [−5, 5]7

𝑓+(𝑥), 𝑓−(𝑥): two normalized gaussians with 𝜎 = 0.3 × 𝐼7
𝑓+ randomly centered in positive 7-hyperoctant.
𝑓− randomly centered in negative 7-hyperoctant.
𝑓bg(𝑥): normalized gaussian with 𝜎 = 1.0 × 𝐼7, ⃗0 centered

NN: Multilayer perceptron: 2 hidden layers, 7D input

▶ nodes in 1st hidden layer: 2 × number of partitions × 7

▶ nodes in 2nd hidden layer: number of partitions × 7

▶ nodes in output layer: number of partitions

▶ activation function in last layer is tanh, one label per contour.
12 / 24

Toy example: Partitioning and training

▶ Objective: create partitions with similar contributions to variance.

▶ Adjust partitions according the their contribution to variance

▶ Stop when a target variance per region has been reached

▶ When new partitions are created, a new networks is trained

▶ Points classified by previous networks are used in repartitioning

After 8 iterations: 1.4 × 107 evaluations and 26 partitions

13 / 24

Toy example: result for final partitioning

0 5 10 15 20 25
Partition index

10 14

10 12

10 10

10 8

10 6

10 4

Va
ria

nc
e

co
nt

rib
ut

io
n

E(V j) 2(f j)
E(f j) 2(V j)

2(f j) 2(V j)
total

•2 × 106 𝑓(𝑥) evaluations
•Target: total variance of
0.052

•Second variance (reduced by
NN) contribution adjusted to
be 0.1 of first (reduced by
𝑓(𝑥)).
•Total number of evaluations
1.6 × 107

14 / 24

Toy example: Distribution of 20 repetitions

0.1 0.0 0.1 0.2 0.3
integration result

0

1

2

3

4

5

•mean: 0.0924
•𝜎: 0.0698
•𝜎 is slightly from target
(0.05)

15 / 24

Toy example: Simple comparison with Vegas+
Using python vegas module
[https://vegas.readthedocs.io/en/latest/index.html] [G. P.
Lepage, arxiv:2009.05112]

20 40 60 80 100
number of iterations (nitn)

0.06

0.08

0.10

0.12

0.14

0.16

In
te

gr
at

io
n

er
ro

r

Vegas: 5 - 6 ×107 evaluations in total
20 runs est. error (average)
error in 20 runs

•Target estimated er-
ror of similar size
•Needed total num-
ber of evaluations of
𝑓(𝑥) is larger
•Resulting error is not
consistent
•Vegas+ is still much
faster for fast 𝑓(𝑥)

16 / 24

Quark pair to electron + positron, event generation

Very simple example:

𝑢�̄� → 𝑒−𝑒+

▶ ROOT - TGenPhaseSpace: phase space generator.

▶ Madgraph (standalon mode): matrix element.

▶ NNPDF23: parton density function.

▶ cuts: leptons: 𝑝𝑇 > 10 GeV, |𝜂| < 2.5

17 / 24

Generate events: 10 usable regions

𝑒−𝑒+ invariant mass projection

▶ Sample each region until
enough events are
accumulated.
NN can tell which
regions points belong to.

▶ Select points using correct
result.

10 9 8
7

6
6
5 4

3 21

𝑚𝑒𝑒 [GeV]

18 / 24

▶ 105 unweighted events
▶ High 𝑚𝑒𝑒 error expected

from thinning of sample.
▶ Invariant mass around 𝑍

resonance is similar when
comparing to MadGraph

▶ Efficiency of selection of
unweighted events
increases with more
regions. But more regions
requires more points for
training

19 / 24

Vanity plots: Region 10 as seen by the NN
𝑍 resonance and low 𝑚𝑒𝑒

20 / 24

Vanity plots: Region 6 as seen by the NN
around 𝑍 resonance

21 / 24

Vanity plots: Region 5 as seen by the NN
Above 𝑍 resonance

22 / 24

Summary

▶ Monte Carlo simulations could be challenging due to
$$ Time consuming costly operations

c Complicated characteristics of the problem

▶ Machine learning can improve the situation, but many options exist.

Ô We presented a process to accelerate sampling of points for slow
functions in a parameter space using a neural network.

Ô The main idea is to separate regions according to importance.
▶ Concentrate on high importance regions
▶ Reduce work in regions that contribute less to results

Ô Division process based and applied only on value of 𝑓(𝑥).

Ô Considerable bike-shedding left out of this talk

23 / 24

Thanks for listening!

24 / 24

