Classifying importance regions in Monte Carlo
simulations with machine learning

Raymundo Ramos
Quantum Universe Center, KIAS
(based on work with: M. Park (SEOULTECH) and K. Ban (KIAS))

International Workshop on Future Linear Colliders
Tokyo, Japan, July 10, 2024

1/24



From theory to discovery (or limits)

[ Theory ]

no match

[Experiment]

[Discoveries] [LimitsJ

More diverse and more precise
experimental results.

Simulations have to keep up with
the complexity of experiments and
provide accurate predictions.

2/24



From theory to discovery (or limits)

[ Theory ]

no match

[Experiment]

[Discoveries] [LimitsJ

More diverse and more precise
experimental results.

Simulations have to keep up with
the complexity of experiments and
provide accurate predictions.

We need more powerful and
expensive computers!

2/24



From theory to discovery (or limits)

[Experiment] [ Theory ]

no match

Compare

[Discoveries] [LimitsJ

More diverse and more precise
experimental results.

Simulations have to keep up with
the complexity of experiments and
provide accurate predictions.

We need merepowerful-and
expensive-ecomputers! improved

techniques for data analysis!

2/24



Complications along the way

P Several dimensions
» Multimodality
P Curved degeneracy

> .

3/24



Monte Carlo: brief review

f(x): Output of a comprehensive calculation with d-dimensional input x

P May become time consuming
P> Likely to require lots of computational resources

To extract answers: Interpret f(x) in relation to a probability density and
use Monte Carlo simulations.

= Monte Carlo (MC) integration in space ¢

1] = / 0z f(2) = Vi (f)gr with Vy = / iz,
b P

MC estimate (N events): E(I) = Vo E((f)g), E((f)g) = ]{/%f@n)
Variance: 0?(E(I)) = VZo3(f(x))/N

4/24



Monte Carlo: brief review

= Variance reduction: stratified sampling

Reduce variance by partitioning the space:
=2 0 Vo=V,
J J
Usually, volumes of partitions are known and

E(I) =Y Va B((f)a), o*(B() =3 VZ o4 (F)/N,

Oversampling needed only in partitions with large variance

5/24



Remixing stratified sampling

Divide ® according to contours of .,k
f(z) (Lebesgue integration):

(I)*{r\l<f y+l}

Now V<1>J- depend on the contours [,

300 A

fix)

200 -

and [;,, and, in general, are subject 100 {
to estimation

OtS 110 115 2t0 215 310 3t5 410 475
= ZE<V®_7-)E(<f><Dj)
J

Fortunately, Vg = and <f>q>j are still independent:
R(B(D) = E2(Vy )o (P )+ B2 (g )73 (Ve ) 403 ((f)n )03 (Vi )

(this is starting to look ugly)



Remixing stratified sampling with a neural network

P Neural networks (NN) as generic function approximators

P> Useful when training a NN could be more efficient than passing
every single point through a heavy calculation

Main idea: train the NN to classify points according to contours

{Z}1  The neural network encodes
the division of regions

Large set of n-dimensional {7}
coordinates @ . It is not necessary to run
: the function to know where
{#}, each Z belongs

Evaluations of the neural network — determine E(Vy ), reduce o2 (Vg )
J J

7/24



Remixing stratified sampling with a neural network

nE2(Vg )0 ((f)a,)

O'é((f>q>j>2 reduced by partitioning, limited by contours of f(z).
Only part where the number of evaluations of f(z) is important
Inaccuracy to predict contours by NN can increase variance.

.E (<]L><I).,) é)(‘(b.)
aq,(V@,) reduced by evaluations of neural network.

.0-(2[) <f>(T> ) ‘(2[,(‘(1', )
Clearly the least |mportant reduced by reducing the other two.

8/24



Remixing stratified sampling with a neural network
Next question: How to divide the range of f(x)?

P Infinite possibilities
P a few simple examples, choose limits on f(Z) such that:

= @, with similar lengths Vq>j

v @, with similar contributions to Iy [f()]

400

400

n
I
350 '”l 350
300 , \ 300
2504 l \ 2504
E 200 I \ Z 200
150 4 150
= /23
100 1 t 7 \ 100
- / \
501 I\ /
J

0.2 0.4 0.6 0.8

05 10 15 20 25 3.0 35 40 45
X C; (normalized)

9/24



Learn divisions of a function with multiple peaks

20 regions with similar contribution to value of integral

anjeA uolpuny

10/24



Learn divisions of a function with multiple peaks

20 regions with similar contribution to value of integral

Is After first training 1s After sixth training
e Uncertain e Uncertain
10 4 X  Misclassified 101 X  Misclassified
5 5 4
< 0 < 0
_5 B _5 4
—10 —10
-15 T T T T T -15 T T T T T
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15
X1 X1

After sixth training step: above 99% accuracy (100000 test points).

11/24



Toy example: 7D function with large cancellation

f(x) = 100[f, (z) — f(2)] + 0.1 fiz(2)
/f(:n)da: = /O.lfbg(x) ~ 0.1, on the cube [-5,5]7

fi(x), f_(x): two normalized gaussians with 0 = 0.3 x I
f. randomly centered in positive 7-hyperoctant.
f_ randomly centered in negative 7-hyperoctant.
fog(®): normalized gaussian with o = 1.0 x I, 0 centered

NN: Multilayer perceptron: 2 hidden layers, 7D input
P nodes in 1st hidden layer: 2 X number of partitions x 7
P> nodes in 2nd hidden layer: number of partitions x 7
P nodes in output layer: number of partitions
>

activation function in last layer is tanh, one label per contour.

12/24



Toy example: Partitioning and training

P Objective: create partitions with similar contributions to variance.
P Adjust partitions according the their contribution to variance

P> Stop when a target variance per region has been reached

P When new partitions are created, a new networks is trained

P> Points classified by previous networks are used in repartitioning

After 8 iterations: 1.4 x 107 evaluations and 26 partitions

13/24



Toy example: result for final partitioning

1074 et b bk rt-&-t-‘--ﬁ—'--t—'--.—i
\ ’
B V] peekekekkkkke )
o VA »2 x 10% f(x) evaluations
R = Target: total variance of
§ 107° I 0.052
2 = Second variance (reduced by
g 107 NN) contribution adjusted to
Vg 'w—-v\ . Rt .
g e be 0.1 of first (reduced by
—e- E(Ve)0* (o) : f(a?))
ke E((No)0?(Va) ‘:, —I— | b f I .
10744 s 02(fo)o(Ve) F = [otal number of evaluations
* o : 1.6 x 107
6 .;; 1‘0 1‘5 2‘0 2‘5

Partition index

14/24



Toy example: Distribution of 20 repetitions

-0.1 0.0 0.1 0.2
integration result

0.3

= mean: 0.0924

=¢g: 0.0698

o is slightly from target
(0.05)

15 /24



Toy example: Simple comparison with Vegas+
Using python vegas module
[https://vegas.readthedocs.io/en/latest/index.html] [G. P.
Lepage, arxiv:2009.05112]

Vegas: 5 - 6 X107 evaluations in total

0.16

0.14 4

o
i
N

Integration error

0.08 -

0.06 -

0.10 A

—— 20 runs est. error (average)
error in 20 runs

a

20 40

60

80 100

number of iterations (nitn)

= Target estimated er-
ror of similar size

= Needed total num-
ber of evaluations of
f(x) is larger

= Resulting error is not
consistent

» Vegas+ is still much
faster for fast f(z)

16/24



Quark pair to electron + positron, event generation

Very simple example:

uu — e et
P> ROOT - TGenPhaseSpace: phase space generator.
P Madgraph (standalon mode): matrix element.

P> NNPDF23: parton density function.

P cuts: leptons: pp > 10GeV, |n] < 2.5

17/24



Generate events: 10 usable regions

e~ e’ invariant mass projection

P Sample each region until
enough events are
accumulated.

NN can tell which
regions points belong to.

P> Select points using correct
result.

m,, [GeV]

18 /24



Number of events

error

ui-ete~ 10° events

10°

104 4

103 4

102 4

101 4

1 This work
MadGraph
1 Theory

10"

T
10%

107

1072

—— Theory - this work

Theory - Madgraph

\‘-\\/\ (_-\/\./\,’\/\/\/\,/f \/ ‘\f‘v’
\/

T
10?
Mee [GeV]

>
>

>

10° unweighted events
High m,, error expected
from thinning of sample.
Invariant mass around Z
resonance is similar when
comparing to MadGraph
Efficiency of selection of
unweighted events
increases with more
regions. But more regions
requires more points for
training

19/24



Vanity plots: Region 10 as seen by the NN

Z resonance and low m,,

500 ;

400 A

300 ~

Eg [GeV]

200 A

100 ~

- )

0 100 200 300 400 500
E, [GeV]

20/24



Vanity plots: Region 6 as seen by the NN

around Z resonance

700 A

600 -

500 A

400 A

E; [GeV]

> 300 A
200 ~
100 A

0 . -

0 200 400 600 800 1000
E, [GeV]

21/24



Vanity plots: Region 5 as seen by the NN

Above Z resonance

800 ¢

600 -

E; [GeV]

400 -

200~

0 250 500 750 1000 1250
E, [GeV]

22/24



Summary

P Monte Carlo simulations could be challenging due to
$$ Time consuming costly operations
%k Complicated characteristics of the problem
P Machine learning can improve the situation, but many options exist.

-> We presented a process to accelerate sampling of points for slow
functions in a parameter space using a neural network.

- The main idea is to separate regions according to importance.
P Concentrate on high importance regions
P Reduce work in regions that contribute less to results

-> Division process based and applied only on value of f(x).

- Considerable bike-shedding left out of this talk

23/24



Thanks for listening!

24 /24



