Jet origin identification: AI enhanced reconstruction for Higgs factory Mangi Ruan

LCWS @ Tokyo U

CEPC Physics study

Chinese Physics C Vol. 43, No. 4 (2019) 043002

Precision Higgs physics at the CEPC*

 Fenfen An(安寿芬)⁴³
 Yu Bai(台羽)⁴
 Chunhui Chen(陈春萍)³³
 Xin Chen(陈春河)⁴³
 Chenadong Houf(台根称)⁴

 Joao Guimaraes da Costa⁴
 Zhenwei Cui(崔振波)¹³
 Yuana Fang(方 포 Ṣ)^{45,14}
 Chengdong Fu(付 成称)⁴

 Jun Gao(高度)¹³
 Yanyan Gao(高色意)¹²
 Yuanai Gao(高度空)¹³
 Shaofeng Ge(高留帝)¹²³

 Jiayin GuigKab)¹³⁵
 Fangyi Guo(常方数)¹⁴
 Mu Guo(常行)¹⁶¹
 Shaofeng Ge(高留帝)¹²³

 Biayin CuigKab)¹¹³⁶
 Sinabar Han(帝世政)¹⁴¹
 Mu Guo(常行)¹⁶¹
 Shaofeng Ge(高留帝)¹²³

 Shih-Chieh Heu(常主芸)¹¹³⁸
 Sinabar Han(金山)¹¹³⁶
 Sinaogang He(何 小H))^{1136,20}
 Jineng Hu(別證奉)¹⁶

 Chia-Ming Kuo(常家(芬)¹¹⁴
 Picital Lai(御行為)¹¹³⁹
 Susang Han(金山)¹¹³⁰
 Susang Han(帝世政)¹¹⁴
 Susang Han(帝世政)¹¹⁴

 Chia-Ming Kuo(常家(芬)¹¹⁴
 Picital Lai(御行為)¹¹³⁹
 Susang Han(李行)¹¹⁴
 Susang Han(李行)¹¹⁴
 Susang Han(李行)¹¹⁴

 Haifeng Li(李海响)¹¹²
 Lian(宝海)¹¹⁴
 Susang Han(李市)¹¹⁴
 Susang Han(李市)¹¹⁴
 Susang Han(李市)¹¹⁴

 Zhijum Liang(常差示)¹¹
 Libo Lian(愛之放)¹¹⁴
 Susang Han(李市)¹¹⁵
 Tao Lian(常)¹¹⁴
 Tao Lian(常)¹¹⁴

 Zhijum Liang(*差示5)¹¹
 Libo Lian(¹¹⁴
 Susand Man(¹¹⁴
 Tao Lian(¹¹⁴)¹¹⁴</t

Mingrui Zhao(赵明锐)² Xianghu Zhao(赵祥虎)⁴ Ning Zhou(周宁)¹⁰

White papers + ~300 Journal/AxXiv citables

¹¹PRISMA Cluster of Excellence & Maine Institute of Version 200237, China Diagnov 200237, China Diagnov Cherohemy Liniversitä Maine, Mainer 53128, Germany ¹¹PRISMA Cluster of Excellence & Mainer Institute of Version, Karlow Cherohemy Liniversitä Maine, Mainer 53128, Germany ¹¹Karlo PLU (WPR), UTLAS, The University of Takyo, Kashiwa, Cabina 274, Stata, Japan ¹¹Vince Institute of Nuclear Sciences, University of Edgesde, Belgrade 11000, Sterba ¹¹School of Physics and Institute of Physics, University of the Winsterman, Ichannesburg 2008, South Africa ¹¹School of Physics and Institute of Physics. University of the Winsterman, Ichannesburg 2008, South Africa ¹¹School of Physics and Institute Physics. University of the Winsterman, Ichannesburg 2008, South Africa ¹¹School of Physics and Institute Physics. University of the Winsterman, Ichannesburg 2008, South Africa ¹¹School of Physics and Institute Physics. University of the Winsterman, Ichannesburg 2008, South Africa ¹¹School of Physics and Institute Physics. University of the Winsterman, Ichannesburg 2008, South Africa ¹¹School of Physics and Institute Physics. University of the Winsterman, Ichannesburg 2008, South Africa ¹¹School of Physics and Institute Physics. University of the Winsterman, Ichannesburg 2008, South Africa ¹¹School of Physics and Institute Physics. University of the Winsterman, Ichannesburg 2008, South Africa ¹¹School of Physics and Institute Physics. University of the Winsterman, Ichannesburg 2008, South Africa ¹¹School of Physics and Institute Physics. University of the Winsterman, Ichannesburg 2008, South Africa ¹¹School of Physics and Institute Physics. University of the Winsterman, Ichannesburg 2008, South Africa ¹¹School of Physics and Institute Physics. University of the Winsterman, Ichannesburg 2008, South Africa ¹¹School of Physics and Institute Physics. ¹¹School of Physics Physi

Received 9 November 2018, Revised 21 January 2019, Published online 4 March 2019

* Supported by the National Key Pinguna firs S&T Reseath and Development (2016/YEA040040); CAS Center for Excellence in Particle Physics, Yifung Wang's Science Studio of the Ten Thomsond Talents Project, the CAS/SATEA International Parturenting Program for Creative Research Tenus (UTS)(SIS)(SIS); IEEP International Control (TS)(SIS)(SIS)); Caster Academy of Science Science, CAS (XQUZV); SSIS-SUBJOD; Chaneve Academy of Science Special Grant Int Large Scientific Project (13111KYS83)(2000); the National Natural Science Foundation of Chancel (167300); the Hendmetral Talent Program of Grantes Academy of Science (153155400); the National 1000 Talentes Program Grantes (LLC) GEACO/CHCH1159), the StyPHY1100070; by the Maryland Creter for Fundamental Physics (MCPP); Tanghan University latintive Scientific Research Program; and the Briging Manicipal Science and Technology Commission project(21311000021800))

E-mail: fangyo@ihep.ac.cn
 E-mail: jagu@mi: maint.de
 E-mail: ingang@mail.hep.ac.cn
 E-mail: qiangi@mail.hep.ac.cn
 E-mail: qiangi@mail.edu
 E-mail: quangi.runn@ihep.ac.cn
 E-mail: mangi.runn@ihep.ac.cn
 E-mail: mangi.runn@ihep.ac.cn

• ...

(1) E-mail: shangkl@hep.ac.co.
(2) E-mail: shangkl@hep.ac.co.
(2) Content from this work may be used under the terms of the Creative Commons Antohution 3.9 Scence. Any further distribution of this work mout mains than antihution to the nutloc(s) and bubbled under the title of the work, journal citation and DOI. Article finded by SCOAP3 and published under licence by Clinese Physical Sceney and the institute of High Energy Physics of the Clinese Academy of Sciences and DOI Published (Modern Physics of the Clinese Academy of Sciences and DOI Published (Modern Physics) and the first term of the Clinese Academy of Sciences and the Institute of Modern Physics of the Clinese Academy of Sciences and DOI Published (Modern Physics) and published (Modern Physics) and published (Modern Physics) and term of the Clinese Academy of Sciences and DOI Published (Modern Physics) and published (Modern Physics) and published (Modern Physics) and term of the Clinese Academy of Sciences and DOI Published (Modern Physics) and term of the Clinese Academy of Sciences and term of the Clinese Academy of Sciences and term of the Clinese Physics) and term of the Clinese Academy of Sciences and term of the Clinese Academy of Sciences and term of the Clinese Physics).

Table 2.1: Precision of the main parameters of interests and observables at the CEPC, from Ref. [1] and the references therein, where the results of Higgs are estimated with a data sample of 20 ab^{-1} . The HL-LHC precision of 2000 bb^{-1} data are used for comparison [2]

	Higgs		W, Z and top				
Observable	HL-LHC projections	CEPC precision	Observable	Current precision	CEPC precision		
M_H	20 MeV	3 MeV	M_W	9 MeV	0.5 MeV		
Γ_H	20%	1.7%	Γ_W	49 MeV	2 MeV		
$\sigma(ZH)$	4.2%	0.26%	M _{top}	760 MeV	$\mathcal{O}(10)$ MeV		
$B(H \rightarrow bb)$	4.4%	0.14%	M_Z	2.1 MeV	0.1 MeV		
$B(H \rightarrow cc)$	-	2.0%	Γ_Z	2.3 MeV	0.025 MeV		
$B(H \to gg)$	-	0.81%	R _b	$3 imes 10^{-3}$	$2 imes 10^{-4}$		
$B(H \to WW^*)$	2.8%	0.53%	R _c	$1.7 imes 10^{-2}$	$1 imes 10^{-3}$		
$B(H\to ZZ^*)$	2.9%	4.2%	R_{μ}	$2 imes 10^{-3}$	$1 imes 10^{-4}$		
$B(H\to\tau^+\tau^-)$	2.9%	0.42%	R_{τ}	$1.7 imes 10^{-2}$	$1 imes 10^{-4}$		
$B(H ightarrow \gamma \gamma)$	2.6%	3.0%	A_{μ}	$1.5 imes 10^{-2}$	$3.5 imes 10^{-5}$		
$B(H\to \mu^+\mu^-)$	8.2%	6.4%	A_{τ}	$4.3 imes10^{-3}$	$7 imes 10^{-5}$		
$B(H \rightarrow Z\gamma)$	20%	8.5%	A_b	$2 imes 10^{-2}$	$2 imes 10^{-4}$		
$Bupper(H \rightarrow inv.)$	2.5%	0.07%	N_{ν}	$2.5 imes 10^{-3}$	$2 imes 10^{-4}$		

Scientific Significance quantified by CEPC physics studies, via full simulation/phenomenology studies:

- Higgs: Precisions exceed HL-LHC ~ 1 order of magnitude.
- EW: Precision improved from current limit by 1-2 orders.
- Flavor Physics, sensitive to NP of 10 TeV or even higher.
- Sensitive to varies of NP signal.

08/07/2004

Performance requirements

- To reconstruct all kinds of Physics Object
 - Identification & Measurements
 - Objects:
 - Lepton, Photons, Kaon,
 - pi-0, Tau, Lambda, Kshort,
 - Heavy flavor hadrons,
 - Jets
 - Missing energy/momentum
 - Exotics...
- Massive Four in Standard Model:
 - Z & W: ~ 70% goes to a pair of jets
 - Higgs: ~90% final state with jets (ZH events)
 - Top: $t \rightarrow W + b$

• Requirements:

Z boson decay Final state

- 1-1 correspondence

Excellent pattern. Reco. & Object id

- Larger acceptance, Excellent intrinsic resolutions, Extremely stable...
- Be addressed by detector design, technology, and reconstruction algorithm

Jet origin id

Hao Liang, Yongfeng Zhu, Yuzhi Che, Yuexin Wang, Huiling Qu, Cen Zhou, etc

PHYSICAL REVIEW LETTERS 132, 221802 (2024)

Jet-Origin Identification and Its Application at an Electron-Positron Higgs Factory

Hao Liang⁰,^{1,2,*} Yongfeng Zhu⁰,^{3,*} Yuexin Wang⁰,^{1,4} Yuzhi Che⁰,^{1,2} Manqi Ruan⁰,^{1,2,†} Chen Zhou^{0,3,‡} and Huilin Qu^{5,§} ¹Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing 100049, China ²University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China ³State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China ⁴China Center of Advanced Science and Technology, Beijing 100190, China ⁵CERN, EP Department, CH-1211 Geneva 23, Switzerland

(Received 16 October 2023; revised 26 April 2024; accepted 1 May 2024; published 31 May 2024)

To enhance the scientific discovery power of high-energy collider experiments, we propose and realize the concept of jet-origin identification that categorizes jets into five quark species (b, c, s, u, d), five antiquarks $(\bar{b}, \bar{c}, \bar{s}, \bar{u}, \bar{d})$, and the gluon. Using state-of-the-art algorithms and simulated $\nu \bar{\nu} H, H \rightarrow j \bar{j}$ events at 240 GeV center-of-mass energy at the electron-positron Higgs factory, the jet-origin identification simultaneously reaches jet flavor tagging efficiencies ranging from 67% to 92% for bottom, charm, and strange quarks and jet charge flip rates of 7%-24% for all quark species. We apply the jet-origin identification to Higgs rare and exotic decay measurements at the nominal luminosity of the Circular Electron Positron Collider and conclude that the upper limits on the branching ratios of $H \rightarrow s\bar{s}, u\bar{u}, d\bar{d}$ and $H \rightarrow sb, db, uc, ds$ can be determined to 2×10^{-4} to 1×10^{-3} at 95% confidence level. The derived upper limit for $H \rightarrow s\bar{s}$ decay is approximately 3 times the prediction of the standard model.

Eur. Phys. J. C (2024) 84:152 https://doi.org/10.1140/epic/s10052-024-12475-5 THE EUROPEAN PHYSICAL JOURNAL C

Regular Article - Experimental Physics

ParticleNet and its application on CEPC jet flavor tagging

Yongfeng Zhu^{1,a}, Hao Liang^{2,3}, Yuexin Wang^{2,3}, Huilin Qu⁴, Chen Zhou^{1,b}, Manqi Ruan^{2,3,c}

¹ State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China ² Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China ³ University of Chinese Academy of Sciences (UCAS), Beijing 100049, China ⁴ EP Department, CERN, 1211 Geneva 23, Switzerland

Received: 15 November 2023 / Accepted: 23 January 2024 © The Author(s) 2024

https://arxiv.org/abs/2310.03440

https://arxiv.org/abs/2309.13231

- Jet origin identification: 11 categories (5 quarks + 5 anti quarks + gluon)
 - Jet Flavor Tagging + Jet Charge measurements + s-tagging + gluon tagging...
- Full Simulated vvH, Higgs to two jets sample at CEPC baseline configuration: CEPC-v4 detector, reconstructed with Arbor + ParticleNet (Deep Learning Tech.)
- 1 Million samples each, 60/20/20% for training, validation & test

Particle Net: IO

Table 3. The input variables used in ParticleNet for jet flavor tagging at the CEPC.

- Input: measurable information of all reconstructed jet particles
- Output: 10(11)-likelihoods to different categories 08/07/2004 LCWS @ Tokyo U

11-dim migration behavior

- Let the jet be identified as the category with highest likelihood:
- Pid: ideal Pid three categories
 - Lepton identification
 - Charged Kaon identification
 - Neutral Kaon identification
- Patterns:
 - ~ Diagonal at quark sector...
 - $P(g \rightarrow q) < P(q \rightarrow g)...$
 - Light jet id...

	b	$\frac{1}{b}$	' C	'	י S	<u>'</u>	u u	$\frac{1}{U}$	d	$\frac{1}{d}$	Ġ		
G -	0.015	0.014	0.025	0.025	0.053	0.053	0.043	0.044	0.033	0.035	0.661		$0.002 \\ 0.001$
a -	0.003	0.003	0.020	0.013	0.093	0.113	0.226	0.079	0.076	0.265	0.110		$0.004 \\ 0.003$
_													$0.006 \\ 0.005$
d -	0.003	0.003	0.012	0.020	0.111	0.093	0.083	0.223	0.261	0.080	0.110		$0.008 \\ 0.007$
u -	0.003	0.002	0.011	0.020	0.132	0.043	0.062	0.368	0.166	0.084	0.108		0.02-0.03 0.01-0.02 0.009
u -	0.002	0.003	0.019	0.012	0.044	0.132	0.375	0.057	0.079	0.168	0.109		0.05-0.06 0.04-0.05 0.03-0.04
<u>s</u> -	0.002	0.003	0.018	0.021	0.101	0.543	0.085	0.028	0.044	0.062	0.092		0.075-0.08 0.07-0.075 0.06-0.07
s -	0.003	0.003	0.020	0.018	0.541	0.104	0.030	0.082	0.062	0.045	0.092		0.09-0.1 0.085-0.09 0.08-0.085
. -	0.015	0.015	0.055	0.741	0.032	0.037	0.010	0.026	0.016	0.010	0.043		0.15-0.2
с-	0.015	0.015	0.740	0.057	0.037	0.032	0.026	0.010	0.009	0.017	0.043		0.3-0.35 0.25-0.3
b -	0.167	0.737	0.026	0.034	0.003	0.004	0.003	0.002	0.002	0.003	0.018		0.5-0.6 0.4-0.5 0.35-0.4
b -	0.738	0.167	0.034	0.026	0.005	0.003	0.002	0.003	0.002	0.002	0.018		0.7-0.8 0.65-0.7 0.6-0.65
	b - <u>b</u> - <u>c</u> - <u>c</u> - <u>s</u> - <u>s</u> - <u>u</u> - <u>d</u> - <u>d</u> - <u>d</u> - <u>d</u> - <u>d</u> -	$b - 0.738$ $\overline{b} - 0.738$ $\overline{b} - 0.167$ $c - 0.015$ $\overline{c} - 0.003$ $\overline{c} - 0.002$ $u - 0.002$ $\overline{u} - 0.003$ $d - 0.003$ $\overline{d} - 0.003$ $\overline{d} - 0.003$ \overline{b}	b 0.738 0.167 \overline{b} 0.167 0.737 \overline{c} 0.015 0.015 \overline{c} 0.015 0.015 \overline{c} 0.003 0.003 \overline{c} 0.002 0.003 \overline{c} 0.003 0.003 \overline{c} 0.003 0.003 \overline{u} 0.003 0.003 \overline{u} 0.003 0.003 \overline{u} 0.003 0.003 \overline{d} 0.015 0.014	b 0.738 0.167 0.034 \overline{b} 0.167 0.737 0.026 \overline{c} 0.015 0.015 0.015 \overline{c} 0.015 0.015 0.015 \overline{c} 0.015 0.015 0.015 \overline{c} 0.003 0.003 0.020 \overline{c} 0.002 0.003 0.019 \overline{a} 0.003 0.003 0.012 \overline{a} 0.003 0.003 0.012 \overline{a} 0.003 0.003 0.020 \overline{a} 0.003 0.003 0.020 \overline{a} 0.015 0.014 0.025 \overline{b} \overline{b} \overline{b} \overline{b}	b 0.738 0.167 0.034 0.026 b 0.167 0.737 0.026 0.034 c 0.015 0.015 0.026 0.034 c 0.015 0.015 0.740 0.057 c 0.015 0.015 0.055 0.741 c 0.015 0.015 0.050 0.741 c 0.003 0.003 0.020 0.018 c 0.002 0.003 0.019 0.021 u 0.003 0.003 0.019 0.020 u 0.003 0.003 0.011 0.020 u 0.003 0.003 0.012 0.013 u 0.003 0.003 0.020 0.013 d 0.003 0.003 0.025 0.025 d 0.015 0.014 0.025 0.025	b 0.738 0.167 0.034 0.026 0.034 0.003 b 0.167 0.737 0.026 0.034 0.033 c 0.015 0.015 0.740 0.057 0.037 c 0.015 0.015 0.015 0.055 0.741 0.032 c 0.003 0.003 0.020 0.018 0.031 0.031 c 0.003 0.003 0.016 0.016 0.016 0.016 d 0.003 0.003 0.003 0.012 0.013 0.013 d 0.015 0.016 0.025 0.025 0.025 0.035 d b b b b b b	b 0.738 0.167 0.034 0.026 0.005 0.003 \overline{b} 0.167 0.737 0.026 0.034 0.003 0.003 c 0.015 0.015 0.015 0.740 0.057 0.037 0.032 c 0.015 0.015 0.015 0.055 0.741 0.032 0.037 c 0.003 0.003 0.020 0.018 0.031 0.032 c 0.003 0.003 0.020 0.018 0.541 0.104 c 0.003 0.003 0.019 0.012 0.014 0.132 d 0.003 0.003 0.012 0.012 0.132 0.043 d 0.003 0.003 0.012 0.020 0.111 0.093 d 0.003 0.003 0.025 0.025 0.035 0.033 d 0.015 0.014 0.025 0.025 0.053 0.053 d b	b - 2 0.738 0.167 0.034 0.026 0.005 0.003 0.004 0.003 $b - 2$ 0.167 0.737 0.026 0.034 0.003 0.004 0.003 $c - 2$ 0.015 0.015 0.740 0.057 0.037 0.032 0.026 $c - 2$ 0.015 0.015 0.740 0.057 0.037 0.032 0.026 $c - 2$ 0.015 0.015 0.741 0.032 0.037 0.032 0.026 $c - 2$ 0.015 0.015 0.741 0.032 0.037 0.032 0.016 $c - 2$ 0.003 0.013 0.026 0.011 0.104 0.132 0.033 0.026 $c - 2$ 0.003 0.003 0.012 0.026 0.111 0.033 0.026 $c - 2$ 0.003 0.013 0.026 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 <td< td=""><td>$b - 2$ 0.738 0.167 0.034 0.026 0.005 0.003 0.002 0.003 $\overline{b} - 2$ 0.167 0.737 0.026 0.034 0.003 0.004 0.003 0.002 $c - 2$ 0.015 0.015 0.740 0.057 0.037 0.032 0.026 0.010 $\overline{c} - 2$ 0.015 0.015 0.740 0.057 0.037 0.032 0.026 0.010 $\overline{c} - 2$ 0.015 0.015 0.741 0.032 0.037 0.026 0.016 $c - 2$ 0.015 0.015 0.015 0.016 0.016 0.026 0.037 0.026 0.026</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>b 0.738 0.167 0.034 0.026 0.003 0.002 0.003 0.002 0.003 0.002 0.012 <</td><td>b 0.738 0.167 0.034 0.026 0.003 0.002 <</td><td>b 0.738 0.167 0.034 0.026 0.003 0.002 0.003 0.002 0.003 0.014 0.033 0.016 0.016 0.013 0.033 0.033 0.023 0.014 0.023 0.013 0.0</td></td<>	$b - 2$ 0.738 0.167 0.034 0.026 0.005 0.003 0.002 0.003 $\overline{b} - 2$ 0.167 0.737 0.026 0.034 0.003 0.004 0.003 0.002 $c - 2$ 0.015 0.015 0.740 0.057 0.037 0.032 0.026 0.010 $\overline{c} - 2$ 0.015 0.015 0.740 0.057 0.037 0.032 0.026 0.010 $\overline{c} - 2$ 0.015 0.015 0.741 0.032 0.037 0.026 0.016 $c - 2$ 0.015 0.015 0.015 0.016 0.016 0.026 0.037 0.026	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	b 0.738 0.167 0.034 0.026 0.003 0.002 0.003 0.002 0.003 0.002 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 <	b 0.738 0.167 0.034 0.026 0.003 0.002 <	b 0.738 0.167 0.034 0.026 0.003 0.002 0.003 0.002 0.003 0.014 0.033 0.016 0.016 0.013 0.033 0.033 0.023 0.014 0.023 0.013 0.0

Performance with different PID scenarios & $H \rightarrow ss$ measurements

Flavor tagging: type that maximize {L_q + L_q_bar, L_g} If quark jet: jet charge ~ compare $\{L_q, L_q_bar\}$ 08/07/2004

Remark: current jet flavor tagging efficiency & jet charge flip rates are projections of the 11-dim arrays produced by Jet origin id

Benchmark analyses: Higgs rare/FCNC

TABLE I: Summary of background events of $H \rightarrow b\bar{b}/c\bar{c}/gg$, Z, and W prior to flavor-based event selection, along with the expected upper limits on Higgs decay branching ratios at 95% CL. Expectations are derived based on the background-only hypothesis.

	Bkg	;. (1	(0^3)	Upper limit (10^{-3})						
	H	Z	W	$s\bar{s}$	$u \bar{u}$	$dar{d}$	sb	db	uc	ds
$ u \overline{ u} H$	151	20	2.1	0.81	0.95	0.99	0.26	0.27	0.46	0.93
$\mu^+\mu^-H$	50	25	0	2.6	3.0	3.2	0.5	0.6	1.0	3.0
e^+e^-H	26	16	0	4.1	4.6	4.8	0.7	0.9	1.6	4.3
Comb.	-	-	-	0.75	0.91	0.95	0.22	0.23	0.39	0.86

- [28] J. Duarte-Campderros, G. Perez, M. Schlaffer, and A. Soffer. Probing the Higgs–strange-quark coupling at e^+e^- colliders using light-jet flavor tagging. *Phys. Rev.* D, 101(11):115005, 2020.
- [50] Alexander Albert et al. Strange quark as a probe for new physics in the Higgs sector. In *Snowmass 2021*, 3 2022.
- [59] J. de Blas et al. Higgs Boson Studies at Future Particle Colliders. JHEP, 01:139, 2020.
- [60] Jorge De Blas, Gauthier Durieux, Christophe Grojean, Jiayin Gu, and Ayan Paul. On the future of Higgs, electroweak and diboson measurements at lepton colliders. *JHEP*, 12:117, 2019.

Performance V.S. Jet Kinematics

Performance @ Z and Higgs

08/07/2004

V.S. Hadronization models

LCWS @ Tokyo U

Recent update at more benchmarks

- From Jet Flavor Tagging to Jet Origin ID:
 - vvH, H \rightarrow cc: 3% \rightarrow 1.7% (**Preliminary**)

 $\begin{array}{ccc} - & Vcb: \ 0.75\% \rightarrow 0.45\% \ (muvqq \ channel. \ evqq: \ 0.6\%, \ combined \ 0.4\%) \\ & & & LCWS \ @ \ Tokyo \ U \end{array}$

Updated result on $\sin^2 \theta_{eff}^l$ measurement

 Table 2.
 Sensitivity S of different final state particles.

\sqrt{s}/GeV	$S {\rm of} A_{FB}^{e/\mu}$	S of A^d_{FB}	$S ext{ of } A^u_{FB}$	$S ext{ of } A^s_{FB}$	S of A^c_{FB}	$S ext{ of } A^b_{FB}$
70	0.224	4.396	1.435	4.403	1.445	4.352
75	0.530	5.264	2.598	5.269	2.616	5.237
92	1.644	5.553	4.200	5.553	4.201	5.549
105	0.269	4.597	1.993	4.598	1.994	4.586
115	0.035	3.956	1.091	3.958	1.087	3.942
130	0.027	3.279	0.531	3.280	0.520	3.261

Table 3. Cross section of process $e^+e^- \rightarrow f\bar{f}$ calculated using the ZFITTER package. Values of the fundamental parameters are set as $m_Z = 91.1875 \text{ GeV}$, $m_t = 173.2 \text{ GeV}$, $m_{II} = 125 \text{ GeV}$, $\sigma_s = 0.118$ and $m_W = 80.38 \text{ GeV}$.

\sqrt{s}/GeV	$\sigma_{\mu}/{ m mb}$	$\sigma_d/{ m mb}$	$\sigma_u/{ m mb}$	$\sigma_{\rm s}/{ m mb}$	$\sigma_c/{ m mb}$	$\sigma_b/{ m mb}$
70	0.039	0.032	0.066	0.031	0.058	0.028
75	0.039	0.047	0.073	0.046	0.065	0.043
92	1.196	5.366	4.228	5.366	4.222	5.268
105	0.075	0.271	0.231	0.271	0.227	0.265
115	0.042	0.135	0.122	0.135	0.118	0.132
130	0.026	0.071	0.068	0.071	0.066	0.069
			2.000		2.000	

Verify the RG behavior... using ~1 month of data taking

Expected statistical uncertainties on $\sin^2 \theta_{eff}^l$ measurement. (Using one-month data collection, ~ 4e12/24 Z events at Z pole)

\sqrt{s}	b	С	S
70	1.6×10^{-5}	3.2×10^{-5}	2.2×10^{-5}
75	1.3×10^{-5}	1.8×10^{-5}	1.8×10^{-5}
92	1.6×10^{-6}	2.2×10^{-6}	2.2×10^{-6}
105	1.0×10^{-5}	2.4×10^{-5}	1.4×10^{-5}
115	1.9×10^{-5}	6.8×10^{-5}	2.7×10^{-5}
130	3.9×10^{-5}	2.3×10^{-4}	5.4×10^{-5}

B-charge flip rate: Bs oscillations

B-charge flip rate: Bs oscillations

• Flip rate ~ 15%, Eff. Tagging power > 40%

Fast/Full Simulation

Z->μμ (91.2 GeV)

Delphes ~ Perfect PFA (1 – 1 correspondence..)

Arbor + AI: @ Boson Mass Resolution

LCWS @ Tokyo U

BMR: impact on critical measurements

BMR decomposition @ CDR baseline

- 1st, Ultimate Precision ~ 2.8 with CDR baseline3rd, HCAL
- 2nd, HCAL resolution dominant the uncertainties from intrinsic detector resolution: need better HCAL
 - 3rd Leading contribution:
 Confusion from shower
 Fragments (fake particles),
 need better Pattern Reco.

Preliminary: Identify & veto charged shower fragments using AI

Trained at 12E4 events,

... At Bosons ...

1-1 correspondence: preliminary

 $nCluHit != 0 \& E > 1 GeV \& |cos\theta| < 0.9$

• Next step: to improve the neutral hadron reco & to optimize the detector configuration

08/07/2004

Summary

- Higgs factory: immense science merit...
- Jet origin id: efficiently separate different species of colored SM particle
 - A "game changer" and opens new horizon for precise flavor studies at all future experiments
- Significantly impact on physics
 - Higgs: improve H \rightarrow ss, uu, dd, sb, uc, sd, db by 3-100 times, and H \rightarrow cc by 2 times
 - Flavor: Improve Vcb precision by ~50%, effective tagging power for b-jet > 40%...
 - EW: Weak mixing angle...
 - QCD: Fragmentation relevant Road Map wanted: towards better hadronization models + experimental validation (from both current data + GigaZ + TeraZ) + applications
 - NP: ...
- AI @ PFA: significantly reduce the confusing... and towards 1-1 correspondence reco.
- Long term version: 'see' gluon + quarks, as we see photon + leptons

Back up

V.S. Hadronization models

LCWS @ Tokyo U

b-jet: leading b-hadrons & flip rates

Charge Flip Rate ω of b hadrons by Whizard & Herwig

Difference in Charge Flip Rate ω of b hadrons between Whizard and Herwig

Difference in Percentage of b hadrons between Whizard and Herwig

6%

c-jet: leading c-hadrons & flip rates

Difference in Percentage of c hadrons between Whizard and Herwig

08/07/2004

Difference in Charge Flip Rate ω of \hat{c} hadrons between Whizard and Herwig

Charge Flip Rate ω of c hadrons by Whizard & Herwig

s-jet: leading s-hadrons & flip rates

Difference in Percentage of s hadrons between Whizard and Herwig

Charge Flip Rate ω of s hadrons by Whizard & Herwig

Difference in Charge Flip Rate ω of s hadrons between Whizard and Herwig

08/07/2004

M11 3 with charged hadron and K_L K_S

													0.7-0.8
	b -	0.748	0.159	0.034	0.024	0.004	0.003	0.002	0.003	0.002	0.002	0.018	0.65-0.7
													0.6-0.65
	<u>b</u> -	0.158	0.749	0.025	0.034	0.003	0.005	0.003	0.002	0.002	0.003	0.017	0.4-0.5
			011 10	0.020	0.001	0.000	0.000	0.000	0.002	0.002	0.000	0.011	0.35 - 0.4
	~												0.3-0.35
	<i>C</i> -	0.016	0.014	0.752	0.053	0.040	0.034	0.020	0.008	0.008	0.017	0.038	0.25-0.3
													0.2-0.25
	\overline{c} -	0.015	0.016	0.052	0.740	0.024	0.041	0.008	0.020	0.017	0.000	0.020	0.15-0.2
		0.015	0.010	0.000	0.145	0.034	0.041	0.008	0.020	0.017	0.009	0.055	0.1-0.15
													0.09-0.1
	s -	0.003	0.002	0.021	0.019	0.607	0.110	0.020	0.056	0.044	0.041	0.077	0.085-0.09
													0.08-0.085
ne													0.07-0.075
Ē	3 -	0.003	0.003	0.019	0.023	0.107	0.609	0.057	0.019	0.041	0.043	0.078	0.06-0.07
													0.05-0.06
	и -	0.002	0.003	0.016	0.009	0.032	0.104	0.378	0.057	0.093	0.197	0.108	0.04-0.05
													0.03 - 0.04
	_												0.02 - 0.03
	u -	0.003	0.002	0.009	0.016	0.102	0.032	0.062	0.371	0.202	0.094	0.108	0.01-0.02
													0.009
	d -	0.003	0.002	0.010	0.016	0.076	0.074	0.087	0.201	0 335	0.086	0 1 1 0	0.008
		0.005	0.002	0.010	0.010	0.070	0.074	0.087	0.201	0.555	0.000	0.110	0.007
	_												0.005
	d -	0.003	0.003	0.016	0.009	0.075	0.076	0.210	0.083	0.086	0.330	0.110	0.004
													0.003
	G -	0.015	0.015	0.004	0.004	0.051	0.050	0.040	0.040	0.040	0.041	0.057	0.002
	U	0.015	0.015	0.024	0.024	0.051	0.050	0.042	0.042	0.040	0.041	0.657	0.001
		<u>_</u>	+	1	<u>+</u>	1	<u> </u>	1	1	4	<u>+</u>	÷	
		D	b	С	С	5	5	u	u	а	d	G	
						Pr	edicte	ed					

M11 2 with charged hadron

	b -	0.738	0.167	0.034	0.026	0.005	0.003	0.002	0.003	0.002	0.002	0.018
	- b	0.167	0.737	0.026	0.034	0.003	0.004	0.003	0.002	0.002	0.003	0.018
	с -	0.015	0.015	0.740	0.057	0.037	0.032	0.026	0.010	0.009	0.017	0.043
	. -	0.015	0.015	0.055	0.741	0.032	0.037	0.010	0.026	0.016	0.010	0.043
	s -	0.003	0.003	0.020	0.018	0.541	0.104	0.030	0.082	0.062	0.045	0.092
True	<u>-</u>	0.002	0.003	0.018	0.021	0.101	0.543	0.085	0.028	0.044	0.062	0.092
	и -	0.002	0.003	0.019	0.012	0.044	0.132	0.375	0.057	0.079	0.168	0.109
	u -	0.003	0.002	0.011	0.020	0.132	0.043	0.062	0.368	0.166	0.084	0.108
	d -	0.003	0.003	0.012	0.020	0.111	0.093	0.083	0.223	0.261	0.080	0.110
	d -	0.003	0.003	0.020	0.013	0.093	0.113	0.226	0.079	0.076	0.265	0.110
	G -	0.015	0.014	0.025	0.025	0.053	0.053	0.043	0.044	0.033	0.035	0.661
		b	$\frac{1}{b}$	C	$\frac{1}{C}$	י 5	$\frac{1}{5}$	u	$\frac{1}{U}$	d	$\frac{1}{d}$	Ġ
						Pr	redicte	ed				

Arbor PFA: Towards one-to-one correspondence (Totoro)

LCWS @ Tokyo U

Arbor Tree topology of particle shower

Eur. Phys. J. C (2018) 78:426 https://doi.org/10.1140/epjc/s10052-018-5876-z THE EUROPEAN PHYSICAL JOURNAL C

Special Article - Tools for Experiment and Theory

Reconstruction of physics objects at the Circular Electron Positron Collider with Arbor

Manqi Ruan^{1,a}, Hang Zhao¹, Gang Li¹, Chengdong Fu¹, Zhigang Wang¹, Xinchou Lou^{6,7,8}, Dan Yu^{1,2}, Vincent Boudry², Henri Videau², Vladislav Balagura², Jean-Claude Brient², Peizhu Lat³, Chia-Ming Kuo³, Bo Liu^{1,4}, Fenfen An^{1,4}, Chunhui Chen⁴, Soeren Prell⁴, Bo Li⁵, Imad Laketineh⁵

¹ Institute of High Energy Physics, Beijing, China

- ² Laboratoire Leprince-Ringuet, Ecole Polytechnique, Palaiseau, France
- ³ Department of Physics and Center of high energy and high field physics, National Central University, Taoyuan City, Taiwan
- ⁴ Iowa State University, Ames, USA
- ⁵ Institute de Physique Nucleaire de Lyon, Lyon, France
- ⁶ Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China 7 Physics, Department of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- ⁷ Physics Department, University of Texas at Dallas, Richardson, TX, USA
- ⁸ University of Chinese Academy of Sciences (UCAS), Beijing, China

15cm

6.5

20 GeV Klong reconstructed @ ILD Calo Curves indicating expected particle trajectories (from MC-truth)

Validation: Arbor Branch Length Vs MC Truth

Arbor: successfully tag sub-shower structure

Samples: Particle gun event at ILD HCAL (readout granularity 1cm² & layer thickness 2.65cm) Length:

Charged MCParticle: spatial distance between generation/end points Arbor branch: sum of distance between neighboring cells

Z→2 jet, \checkmark H→2 tau \sim 5%

ZH \rightarrow 4 jets ~50%

Z→2 muon H→WW*→eevv ~1%

08/07/2004

CMS Experiment at LHC, CERN Data recorded: Thu Jan 1 01:00:00 1970 CEST Run/Event: 1 / 1201 Lumi section: 13

k

V.S. Multiplicity

• ...many patterns need further understanding & towards further optimization...

- FD characteristics of different beam particles
 - Imaging capability of high granularity calorimeter ()

Lepton: isolated **CEPC** Preliminary $Z \rightarrow \mu^+ \mu^-$; Ldt = 5 ab⁻¹ **~102** CEPC Simulation log10(ELike) agged eff(%) Entries/0.25 GeV 4000 S+B Fit Sional Background 100 98 2000 -electron 96 muon 94 - pion -10 Electron $M_{recoil}^{\mu^{+}\mu^{1}}[GeV]$ 125 120 135 • Muon 92 × Pion 90 -15 10² -10 1500 -5 -15 10 log10(MuLike) GeV Energy +B Fit Signal Background

BDT method using 4 classes of 24 input discrimination variables.

Test performance at: Electron = E likeness > 0.5; Muon = Mu likeness > 0.5Single charged reconstructed particle, for E > 2 GeV: lepton efficiency > 99.5% && Pion mis id rate $\sim 1\%$

https://link.springer.com/article/10.1140/epjc/s10052-017-5146-5 CEPC-DocDB-id:148, Eur. Phys. J. C (2017) 77: 591 LCWS @ Tokyo U 39

Lepton: inside jet

Compared the single particle sample, the jet lepton (at Z->bb sample at sqrt = 91.2 GeV) Performance will be slightly degraded – Due to the limited clustering performance (splitting & contaimination).

At the same working point, the efficiency can be reduced by up to 3%; while mis-id rate increases up to 1%. Marginal Impact on Flavor Physics measurements as Bc->tauv.

Highly appreciated in flavor physics @ CEPC Z pole TPC dEdx + ToF of 50 ps

At inclusive Z pole sample:

Conservative estimation gives efficiency/purity of 91%/94% (2-20 GeV, 50% degrading +50 ps ToF) Could be improved to 96%/96% by better detector/DAQ performance (20% degrading + 50 ps ToF)

Pid performance

3% of dE/dx & dN/dx + 50 ps ToF: eff/purity of Kaon reco > 95%

Neutral Particle id: Very Preliminary

• Fast Sim Prediction: BMR: $2.9 \rightarrow 2.6$

- Need excellent CALO + ToF ~ o(10 ps)
- Need high efficiency neutral hadron reco (1-1 correspondence)

2-body decay particles and tau leptons

Fig. 7 All reconstructed mass distributions of K_S^0 and Λ . They are fitted with double-sided crystal ball functions

08/07/2004