Fast Timing for PID

LCWS 2024 Tokyo University July 10, 2024

Bohdan Dudar^{1,2}, Ulrich Einhaus¹ Frank Gaede¹, Konrad Helms^{1,3}, Jenny List¹

¹ Deutsches Elektronen-Synchrotron DESY
² Univeristät Hamburg
³ Georg-August-Universität Göttingen

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Introduction

Fast time measurements for Higgs Factory detectors?

- ToF traditionally widely used eg in heavy ion experiments (STAR, NA61/SHINE, ALICE)
- significant hardware progress: 10ps timing and better in reach, e.g. LGADs & Co
- HL-LHC: ATLAS & CMS implement fast timing layers for pile-up mitigation, LGADs and crystals with SiPMs (30-40ps)
- Can Higgs Factories profit?
 - reject hits from other BX or backscatter $\sim O(ns)$ sufficient, foreseen already (eg CLICdp)
 - integrate time information into ParticleFlow(5D) = work starting, probably O(100ps) can already achieve a lot
 - This talk: ToF for Kaon and proton identification (PID)?
- What can we gain?
 - with TPC, i.e. dE/dx
 - without TPC
- Today:
 - State-of-the-Art ToF reconstruction in ILD
 - Benefit for PID

State-of-the-Art ToF

Working principle The basic ingredients

ILD full reconstruction

the master formula:

$$= p \sqrt{\frac{c^2 T^2}{L^2} - 1}$$

Working principle The basic ingredients

ILD full reconstruction

the master formula:

$$= p\sqrt{\frac{c^2T^2}{L^2} - 1}$$

Working principle The basic ingredients

ILD full reconstruction

the master formula:

$$= p \sqrt{\frac{c^2 T^2}{L^2} - 1}$$

Track Length The first surprise....

- precise track length very important for $\Delta T < 100 \text{ps!}$
- rule of thumb: $\Delta T=10 \text{ ps} \sim \Delta L = 3 \text{ mm}$
 - which track parameters?
 - from which track state?

Track Length The first surprise....

- precise track length very important for $\Delta T < 100 \text{ps!}$
- rule of thumb: $\Delta T=10 \text{ ps} \sim \Delta L = 3 \text{ mm}$
 - which track parameters?
 - from which track state?

DESY. Fast Timing for PID | J. List | LCWS2024 | July 10 2024

with perfect ΔT

- $\Delta T < 100 \text{ps!}$

DESY. Fast Timing for PID | J. List | LCWS2024 | July 10 2024

Placement:

First ECAL layer dedicated for timing

Assumed hit time resolution:

Expected **TOF** resolution:

(no digitization effects, only Gaussian smear of MC true time)

* Hit time reconstruction is very simplified Central question: what is the best way for TOF reconstruction?

DESY. | TOF pID at future Higgs factories | Bohdan Dudar

 $\sim 30 \text{ ps}$

 $\sim 30 \text{ ps}$

Two external tracker layers $\sim 50 \text{ ps}$

 $\sim \frac{50}{\sqrt{2}}$ ps

21 March 2023

Additional considerations for the future

- synchronisation \bullet across detector / with beam
- clock jitter \bullet
- dependence on size \bullet of signal

. . .

Placement:

Assumed hit time resolution:

Expected **TOF** resolution:

- * Hit time reconstruction is very simplified

DESY. | TOF pID at future Higgs factories | Bohdan Dudar

First ECAL layer dedicated for timing

 $\sim 30 \text{ ps}$

 $\sim 30 \text{ ps}$

Two external tracker layers $\sim 50 \text{ ps}$

 $\sim \frac{50}{\sqrt{2}}$ ps

(no digitization effects, only Gaussian smear of MC true time) Central question: what is the best way for TOF reconstruction?

21 March 2023

SET Track

Additional considerations for the future

- synchronisation \bullet across detector / with beam
- clock jitter \bullet
- dependence on size of signal

. . .

Placement:

Assumed hit time resolution:

Expected **TOF** resolution:

- * Hit time reconstruction is very simplified

DESY. | TOF pID at future Higgs factories | Bohdan Dudar

First ECAL layer dedicated for timing

 $\sim 30 \text{ ps}$

 $\sim 30 \text{ ps}$

21 March 2023

Is 1/sqrt(N_{hit}) achievable in pratice?

 $\sim \frac{50}{\sqrt{2}}$ ps

Additional considerations for the future

- synchronisation \bullet across detector / with beam
- clock jitter \bullet

. . .

dependence on size of signal

Placement:

Assumed hit time resolution:

Expected **TOF** resolution:

- * Hit time reconstruction is very simplified

DESY. Fast Timing for PID | J. List | LCWS2024 | July 10 2024

First ECAL layer dedicated for timing

 $\sim 30 \text{ ps}$

 $\sim 30 \text{ ps}$

 $\sim \frac{50}{\sqrt{2}}$ ps

- Baseline ILD IDR: take closest hit to extrapolated track in each layer
- New: "Cylinder" optimised outlier rejection in terms of
 - radius from track
 - median hit time
- for 50 ps hit time resolution achieve $\Delta T = 17$ ps ToF

7

- Baseline ILD IDR: take closest hit to extrapolated track in each layer
- New: "Cylinder" optimised outlier rejection in terms of
 - radius from track
 - median hit time
- for 50 ps hit time resolution achieve $\Delta T = 17$ ps ToF

7

- Baseline ILD IDR: take closest hit to extrapolated track in each layer
- New: "Cylinder" optimised outlier rejection in terms of
 - radius from track
 - median hit time
- for 50 ps hit time resolution achieve $\Delta T = 17$ ps ToF

- Baseline ILD IDR: take closest hit to extrapolated track in each layer
- New: "Cylinder" optimised outlier rejection in terms of
 - radius from track
 - median hit time
- for 50 ps hit time resolution achieve $\Delta T = 17$ ps ToF

- Baseline ILD IDR: take closest hit to extrapolated track in each layer
- New: "Cylinder" optimised outlier rejection in terms of
 - radius from track
 - median hit time
- for 50 ps hit time resolution achieve $\Delta T = 17$ ps ToF

DESY. Fast Timing for PID | J. List | LCWS2024 | July 10 2024

$\Delta T(ToF) \approx \Delta T(hit) / \sqrt{(N_{hit}) holds !}$

- Baseline ILD IDR: take closest hit to extrapolated track in each layer
- New: "Cylinder" optimised outlier rejection in terms of
 - radius from track
 - median hit time
- for 50 ps hit time resolution achieve $\Delta T = 17$ ps ToF

DESY. Fast Timing for PID | J. List | LCWS2024 | July 10 2024

$\Delta T(ToF) \approx \Delta T(hit) / \sqrt{(N_{hit}) holds !}$

Methods for Calo ToF Reconstruction II

Machine-Learning!

Transformer Network

- hit position (3D)
- hit time
- hit energy
- dist(3D) to ECal entry point
- dist(2D) to track extrapolation
- dist(1D) from median time

nt ation

Methods for Calo ToF Reconstruction I

Machine-Learning!

Transformer Network

- hit position (3D)
- hit time
- hit energy
- dist(3D) to ECal entry point dist(2D) to track extrapolation
- dist(1D) from median time

DESY. Fast Timing for PID | J. List | LCWS2024 | July 10 2024

Methods for Calo ToF Reconstruction II

Machine-Learning!

Transformer Network

- hit position (3D)
- hit time
- hit energy
- dist(3D) to ECal entry point
- dist(2D) to track extrapolation
- dist(1D) from median time

DESY. Fast Timing for PID | J. List | LCWS2024 | July 10 2024

DESY. Fast Timing for PID | J. List | LCWS2024 | July 10 2024

Impact on pi/K/p ID

Definition of Separation Power between different particle species

- thin slices in p
- define

 $\varepsilon = \text{efficiency} = \frac{S}{S_0} = \frac{\text{correctly identified signals}}{\text{all signal events}}$ $r_{\text{misID}} = \text{mis-id} = \frac{B}{B_0} = \frac{\text{wrongly accepted backtground}}{\text{all background events}}$

between different particle species

- thin slices in p
- define

 $\varepsilon = \text{efficiency} = \frac{S}{S_0} = \frac{\text{correctly identified signals}}{\text{all signal events}}$ $r_{\text{misID}} = \text{mis-id} = \frac{B}{B_0} = \frac{\text{wrongly accepted backtground}}{\text{all background events}}$

- not neccessarily Gaussian!
- separation power Z:

Normalised N entries 10⁻¹ 10⁻²

 10^{-5}

between different particle species

- thin slices in p
- define

 $\varepsilon = \text{efficiency} = \frac{S}{S_0} = \frac{\text{correctly identified signals}}{\text{all signal events}}$ $r_{\text{misID}} = \text{mis-id} = \frac{B}{B_0} = \frac{\text{wrongly accepted backtground}}{\text{all background events}}$

- not neccessarily Gaussian!
- separation power Z:

$$Z = 2\Phi^{-1}(\varepsilon)$$
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-x^2/2} dx$$

accounts for non-Gaussian tails

N entries 10⁻¹ 10⁻²

Normalised I

 10^{-3}

 10^{-5}

power

eparation

S

я/К

6

5

1E

0

2

between different particle species

- thin slices in p
- define

correctly identified signals $\varepsilon = \text{efficiency} =$ all signal events wrongly accepted backtground $r_{\rm misID} = {\rm mis-id} =$ B_0 all background events

- not neccessarily Gaussian!
- separation power Z:

$$Z = 2\Phi^{-1}(\varepsilon)$$
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-x^2/2} dx$$

accounts for non-Gaussian tails

between different particle species

- thin slices in p
- define

correctly identified signals $\varepsilon = \text{efficiency} =$ all signal events wrongly accepted backtground $r_{\rm misID} = {\rm mis-id} =$ all background events B_0

- not neccessarily Gaussian!
- separation power Z:

$$Z = 2\Phi^{-1}(\varepsilon)$$

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-x^2/2} dx$$

accounts for non-Gaussian tails

10 ps / particle ≙ 30 ps / hit for 10 ECal layers => > 3σ for 1-5 GeV π / K > 3 σ for 1-8 GeV K / p

ToF & dE/dx Separation Power

ILD can combine the two

- 30 ps / particle **≙ 100 ps / hit for 10 ECal layers**
- dE/dx res. ~4.5%
- $=> > 3\sigma$ for 0.5-18 GeV π / K
 - $> 3\sigma$ for 0.5-5 GeV K / p

11

ToF & dE/dx Separation Power

ILD can combine the two

- 10 ps / particle **30 ps / hit for 10 ECal layers**
- dE/dx res. ~4.5%
- $=> > 3\sigma$ for 0.5-18 GeV π / K

 $> 3\sigma$ for 0.5-8 GeV K / p

11

11

- ToF covers low-momentum dips in dE/dx at > 3σ level large part of the momentum range even > 4σ contributes up to ~10 GeV (K/p even up to 20 GeV)
- superseeds IDR plot!

pi/K/p momentum spectra **Generator-level and after reconstruction**

- most particles actually are ToFrelevant momentum range
- but often not the leading K, p etc => ML-based taggers use PID infor for all particles
- many π / K with p <1 GeV lacksquaredecay in tracker => if kink is identified in TPC, could still do ToF with more complex algorithm

pi/K/p momentum spectra **Generator-level and after reconstruction**

- most particles actually are ToFrelevant momentum range
- but often not the leading K, p etc => ML-based taggers use PID infor for all particles
- many π / K with p <1 GeV lacksquaredecay in tracker => if kink is identified in TPC, could still do ToF with more complex algorithm

pi/K/p momentum spectra **Generator-level and after reconstruction**

- most particles actually are ToFrelevant momentum range
- but often not the leading K, p etc => ML-based taggers use PID infor for all particles
- many π / K with p <1 GeV lacksquaredecay in tracker => if kink is identified in TPC, could still do ToF with more complex algorithm

- for same working point as before, i.e. effi = 1-misID (actual analyses) might use other choice!)
- with ToF-30ps only, more K than π for 1-3 GeV lacksquare
- with ToF-10ps, improve to 1-6 GeV
- => without TPC, 10ps or better required to make ToF useful for Kaon ID

- for same working point as before, i.e. effi = 1-misID (actual analyses) might use other choice!)
- with ToF-30ps only, more K than π for 1-3 GeV lacksquare
- with ToF-10ps, improve to 1-6 GeV
- => without TPC, 10ps or better required to make ToF useful for Kaon ID

- for same working point as before, i.e. effi = 1-misID (actual analyses) might use other choice!)
- with ToF-30ps only, more K than π for 1-3 GeV lacksquare
- with ToF-10ps, improve to 1-6 GeV
- => without TPC, 10ps or better required to make ToF useful for Kaon ID

- for same working point as before, i.e. effi = 1-misID (actual analyses might use other choice!)
- with ToF-30ps only, more K than π for 1-3 GeV
- with ToF-10ps, improve to 1-6 GeV
- => without TPC, 10ps or better required to make ToF useful for Kaon ID
 - with dE/dx only, overwhelmed by π below 2 GeV
 - adding ToF-30ps, K useful down to 1 GeV
 - ToF-10ps improves purity a lot in 2-7 GeV!

- for same working point as before, i.e. effi = 1-misID (actual analyses might use other choice!)
- with ToF-30ps only, more K than π for 1-3 GeV
- with ToF-10ps, improve to 1-6 GeV
- => without TPC, 10ps or better required to make ToF useful for Kaon ID
 - with dE/dx only, overwhelmed by π below 2 GeV
 - adding ToF-30ps, K useful down to 1 GeV
 - ToF-10ps improves purity a lot in 2-7 GeV!

- for same working point as before, i.e. effi = 1-misID (actual analyses might use other choice!)
- with ToF-30ps only, more K than π for 1-3 GeV
- with ToF-10ps, improve to 1-6 GeV
- => without TPC, 10ps or better required to make ToF useful for Kaon ID
 - with dE/dx only, overwhelmed by π below 2 GeV
 - adding ToF-30ps, K useful down to 1 GeV
 - ToF-10ps improves purity a lot in 2-7 GeV!

- for same working point as before, i.e. effi = 1-misID (actual analyses might use other choice!)
- with ToF-30ps only, more K than π for 1-3 GeV
- with ToF-10ps, improve to 1-6 GeV
- => without TPC, 10ps or better required to make ToF useful for Kaon ID
 - with dE/dx only, overwhelmed by π below 2 GeV
 - adding ToF-30ps, K useful down to 1 GeV
 - ToF-10ps improves purity a lot in 2-7 GeV!

- for same working point as before, i.e. effi = 1-misID (actual analyses might use other choice!)
- with ToF-30ps only, more K than π for 1-3 GeV
- with ToF-10ps, improve to 1-6 GeV
- => without TPC, 10ps or better required to make ToF useful for Kaon ID
 - with dE/dx only, overwhelmed by π below 2 GeV
 - adding ToF-30ps, K useful down to 1 GeV
 - ToF-10ps improves purity a lot in 2-7 GeV!

=> with TPC, 30ps is enough to cover "hole" at low momenta, however 10ps significantly improves purity at higher momenta!

10ps vs 30ps makes a difference!

10 ps [≙] 2 outer tracker 2 hits with 15ps or 10 layers ECal with 30ps

Just a few brief comments

DESY. Fast Timing for PID | J. List | LCWS2024 \bigcirc_{L}°

Just a few brief comments

DESY. Fast Timing for PID | J. List | LCWS2024

- state-of-the-art ToF requires
 - new track length calculation => tracker hits!
 - new hit time -> PFO time method => ECal hits!

=> this cannot be post-fixed on DST, REC saved for only few % of data

Mass² (GeV²/c⁴) 0.8 tooavs 0.6 method 0.4 0.2 0 -0.26 0 2 3 5 7 Momentum (GeV/c)

- state-of-the-art ToF requires
 - new track length calculation => tracker hits!
 - new hit time -> PFO time method => ECal hits!

=> this cannot be post-fixed on DST, REC saved for only few % of data

All this not available on mc-2020 250GeV ILD **DST mass production** — can only use IDR ToF

- state-of-the-art ToF requires
 - new track length calculation => tracker hits!
 - new hit time -> PFO time method => ECal hits!

=> this cannot be post-fixed on DST, REC saved for only few % of data

All this not available on mc-2020 250GeV ILD **DST mass production** — can only use IDR ToF

CPID on single particles, 1-100 GeV, with

- dE/dx 4.5%
- IDR ToF, 50ps /hit
- Pandora PID
- LeptonID in jets

- outlook:
 - new track length in master, could be used in a next ILD MC production

DESY. Fast Timing for PID | J. List | LCWS2024 | July 10 2024

All this not available on mc-2020 250GeV ILD **DST** mass production — can only use IDR ToF

CPID on single particles, 1-100 GeV, with

- dE/dx 4.5%
- IDR ToF, 50ps /hit
- Pandora PID
- LeptonID in jets

• hit -> PFO time algorithms not yet committed, but could live with effective smearing of true Geant time

Conclusions and Outlook

- over the last years lot of progress on reconstructing ToF for PID
 - track length => 220 TPC hits \checkmark —all Si tracker ?
 - including endcaps (multiple turns!)
 - how to estimate ToF from ECal hits => $\Delta T(ToF) \approx \Delta T(hit) / \sqrt{(N_{hit})}$ holds

detector optimisation

- 30 ps / particle 100ps / ECal hit ~ 50ps / SET hit:
 - all Si tracker: not very useful..?
 - with TPC: enough to cover dE/dx "gaps" at low momentum
- 10 ps/ particle 30ps / ECal hit ~ 15ps / SET hit:
 - all Si tracker: Kaon ID ~1-6 GeV
 - with TPC: significant improvement of Kaon purity 2-7 GeV!
- real-life problems not yet evaluated: synchronisation, clock jitter, power budget.... => needs ECal experts' input!
- physics applications:
 - many...
 - full exploitation of PID information only starting
 - stay tuned for ongoing ML flavour tagging

BACKUP