Top physics opportunities at and e+e- collider – focus topic "ttbar threshold"

Marcel Vos, IFIC, CSIC/UV, Valencia, Spain

July 9th, 2024

Expert team: M. Beneke (TUM, theory), F. Cornet (Case Western, theory), M. Defranchis (CERN, CMS), G. Durieux (Louvain, theory), A. Hoang (U. Vienna, theory), A. Jafari (DESY, CMS), Y. Kiyo (theory), V. Miralles (Manchester, theory), M. Moreno (IFIC, ATLAS), L. Pintucci (Trieste, ATLAS), Jürgen Reuter (DESY), R. Schwienhorst (Michigan State, ATLAS), F. Simon (KIT, e+e-), F. Zarnecki (Warsaw, e+e-)

R. Franceschini, A. Irles J. de Blas (related focus topics), P. Azzi (liaison FCCee)

Practical

The ECFA focus topics document: https://arxiv.org/abs/2401.07564

Focus topics for the ECFA study on Higgs / Top / EW factories

Juan Alcaraz Maestre¹, Juliette Alimena², John Alison³, Patrizia Azzi⁴, Paolo Azzurri⁵, Emanuele Bagnaschi^{6,7}, Timothy Barklow⁸, Matthew J. Basso⁹, Josh Bendavid¹⁰, Martin Beneke¹¹, Eli Ben-Haim¹², Mikael Berggren², Jorge de Blas¹³, Marzia Bordone⁶, Ivanka Bozovic¹⁴, Valentina Cairo⁶, Nuno Filipe Castro¹⁵, Marina Cobal¹⁶, Paula Collins⁶, Mogens Dam¹⁷, Valerio Dao⁶, Matteo Defranchis⁶, Ansgar Denner¹⁸, Stefan Dittmaier¹⁹, Gauthier Durieux²⁰, Ulrich Einhaus², Mary-Cruz Fouz1, Roberto Franceschini21, Ayres Freitas22, Frank Gaede2, Gerardo Ganis6, Pablo Goldenzweig²³, Ricardo Gonçalo^{24,25}, Rebeca Gonzalez Suarez²⁶, Loukas Gouskos²⁷. Alexander Grohsjean²⁸, Jan Hajer²⁹, Chris Hays³⁰, Sven Heinemeyer³¹, André Hoang³², Adrián Irles³³, Abideh Jafari², Karl Jakobs¹⁹, Daniel Jeans³⁴, Jernei F, Kamenik³⁵, Matthew Kenzie³⁶, Wolfgang Kilian³⁷, Markus Klute²³, Patrick Koppenburg³⁸, Sandra Kortner³⁹, Karsten Köneke¹⁹, Marcin Kucharczyk⁴⁰, Christos Leonidopoulos⁴¹, Cheng Li⁴², Zoltan Ligeti⁴³, Jenny List², Fabio Maltoni²⁰, Elisa Manoni⁴⁴, Giovanni Marchiori⁴⁵, David Marzocca⁴⁶, Andreas B. Meyer², Ken Mimasu⁴⁸, Tristan Miralles⁴⁷, Victor Miralles⁴⁹, Abdollah Mohammadi⁵⁰, Stéphane Monteil⁵¹ Gudrid Moortgat-Pick28, Zohreh Najafabadi52, María Teresa Núñez Pardo de Vera2, Fabrizio Palla5, Michael E. Peskin⁸, Fulvio Piccinini⁵³, Laura Pintucci⁵⁴, Wiesław Płaczek⁵⁵, Simon Plätzer^{56,32}, Roman Pöschl⁵⁷, Tania Robens⁵⁸, Aidan Robson⁵⁹, Philipp Roloff⁶, Nikolaos Rompotis⁶⁰, Andrej Saibel³³, André Sailer⁶, Roberto Salerno⁶¹, Matthias Schott⁶², Reinhard Schwienhorst⁶³, Felix Sefkow², Michele Selvaggi⁶, Frank Siegert⁶⁴, Frank Simon²³, Andrzej Siodmok⁵⁵, Torbjörn Sjöstrand⁶⁵, Kirill Skovpen⁶⁶, Maciej Skrzypek⁴⁰, Yotam Soreq⁶⁷, Raimund Ströhmer¹⁸, Taikan Suehara⁶⁸, Junping Tian⁶⁸, Emma Torro Pastor³³, Maria Ubiali³⁶, Luiz Vale Silva³³, Caterina Vernieri⁸, Alessandro Vicini⁶⁹ Marcel Vos³³, Aidan R. Wiederhold⁷⁰, Sarah Louise Williams³⁶, Graham Wilson⁷¹, Aleksander Filip Zarnecki⁷², Dirk Zerwas^{73,57}

The mailing list: https://gitlab.in2p3.fr/ecfa-study/ECFA-HiggsTopEW-Factories/-/wikis/FocusTopics/TTthresh

The $\ensuremath{t\bar{t}}$ threshold scan

LCWS24, Tokyo, Japan

The top quark mass

The top quark mass is a key parameter of the SM that must be determined experimentally

Direct measurements at hadron collider determine the best-fit mass parameter of the workhorse Powheg+Pythia8 Monte Carlo generator

Experiment is extremely precise:
600 MeV for single measurements see also CMS, arXiv:2302.1967
330 MeV for LHC run 1 combination arXiv:2402.08713 (PRL soon)

More work is needed to bring interpretation to the same level

(André Hoang, What is the top quark mass? Ann. Rev. Nucl. Part. Sci. 70 (2020)

Status quo: "the difference between the top mass in direct measurements and the top pole mass is of the order of few hundred MeV", Corcella, Nason, Hoang, Yokoya, arXiv:1902.04070

Top mass at LHC & HL-LHC, interpretation

+ Snowmass report arXiv:2209.11267 arXiv:2203.08064

J/psi and sec. vertex methods are starting to deliver (CMS sec. Vtx., ATLAS soft-muon)

Boosted top mass improving rapidly CMS 2.5 GeV in $2020 \rightarrow 0.8$ GeV in 2023 Connects direct results with "calibration" Butenschoen et al., PRL 117 (2016), Hoang et al. PRD100 (2019)

Cross-section-based mass extractions achieve O(1 GeV) precision/measurement. Theorist's combined fit yields 300 MeV (Zenaiev & Moch, arXiv:).

Variety of methods yields important test of internal consistency

Even with the most conservative interpretation we're well beyond 1 GeV expectation!!! (HL-LHC primer, hep-ph/0204087)

e+e- threshold scan

A scan of the e⁺e⁻ center-of-mass energy through the pair production threshold allows for the ultimate mass measurement (*Gusken & Kuhn '85, Peskin & Strassler '91*) Experimental studies: Martinez & Miquel, hep-ph/020735, Seidel et al., arXiv:1303.3758 **Part of the operation plan for all e+e- collider projects: Higgs & top factory!**

The threshold position is sensitive to the top quark mass, the shape to the width The normalization is sensitive to strong coupling and top quark Yukawa coupling Just measure the cross section vs. sqrt(s) shape and derive all parameters

LCWS24, Tokyo, Japan

Top quark mass

Frank Simon's seminar Snowmass top physics report

Statistical uncertainty - - - - can be made small with 1-2 years of operation

Theory uncertainty requires calculation beyond NNNLO (QCD) + NNLO (EW). Resummation is available and can be added.

Note: interpretation unambiguous, translation to MS scheme with O(10 MeV) QCD scale uncertainty, parametric uncertainty from α_s requires care, as well as EW corrections

Top quark mass to **approx. 50 MeV**, limited by theory uncertainty and to first order independent of collider design (luminosity spectrum has 2nd order effect)

Top quark width to 45 MeV \rightarrow bounds on invisible decays+SMEFT arXiv:1907.00997 Precision for $\alpha_s \sim 0.001$ and $y_t \sim 12\%$ not competitive, but good cross-checks

Future directions

Exp: Full-simulation study to revisit and harmonize experimental systematic uncertainties
Theo: Fully differential predictions at adequate precision
Specify procedure for comparison of data and theory (i.e. treatment of ISR?)
Study width prospects in more detail (i.e. comparison LHC, interpretation in NP scenarios)
Embed top mass prospect in global EW fit environment
Find a way to make top Yukawa and strong coupling results more competitive

Theoretical and phenomenological targets

- Complete and harmonised assessment of systematic uncertainties on SM parameters extracted from the threshold scan.
- Degeneracies in a EFT analysis including only "one" energy point. How to disentangle effects combining with other (non-top-quark) measurements. Indirect constraints on top Yukawa.

MC samples needed

Basic samples available as listed in the Motivation Section, dedicated samples for threshold scan are needed.

Existing tools / examples

- ILD tt analysis https://github.com/ILDAnaSoft/ILDbench_QQbar

Contact & Further Information

- Gitlab wiki: https://gitlab.in2p3.fr/ecfa-study/ECFA-HiggsTopEW-Factories/-/wikis/ FocusTopics/TTthresh
- Sign up for egroup: ECFA-WHF-FT-TTthres@cern.ch via http://simba3.web.cern.ch/simba3/ SelfSubscription.aspx?groupName=ecfa-whf-ft-ttthres
- and/or email the conveners of ECFA WG1 GLOBal group: mailto:ecfa-whf-wg1-glob-conveners@cern.ch

LCWS24, Tokyo, Japan

New results

The top Yukawa coupling affects the overall cross section and is nearly degenerate with the strong coupling constant.

Ankita Mehta & Matteo Defranchis (preliminary):

A shape analysis may benefit from a point well above threshold, where the Yukawa coupling still has an effect, while α_s doesn't (leading Yukawa effect is virtual correction, not the potential generated by Higgs exchange)

Potential issues: validity of the calculation, correlation of scale uncertainties...

Above the threshold: a broad precision programme

Top EW couplings Top quark Yukawa Quantum information

. . .

Current SMEFT bounds from top program

Bounds on SMEFT Wilson coefficients still O(1) to O(10) for many operators Still large correlations and many blind directions: add more measurements

HL-LHC to gain factor 2-5 in all coefficients, with reasonable assumptions:

- NNLO calculations appear for ttX and tqX production
- Modelling uncertainties improve by factor 2
- Progress in top quark pair production driven by boosted production
- Measurements improve as $1/sqrt(L_{int})$: O(10%) now $\rightarrow O(few \%)$ in 2037

LCWS24, Tokyo, Japan

11

The e+e- programme

A broad programme above the $t\bar{t}$ threshold

pair production (a)single top production (e)

High energy enables further processes

- ttZ & ttH (c,d)

– VBF top production (b)

Measurements of cross section, forward-backward asymmetry, polarization, CP-odd observables

Durieux et al. (arXiv:1807.02121) define optimal observables on $e+e- \rightarrow$ WbWb production

top SMEFT fit

Durieux, Perello, Zhang, Vos, arXiv:1807.02121 CLIC top paper, arXiv:1807.02441

Circular Collider 350+365

Sensitivity to four-fermion operators increases strongly with energy

Figure 23. Global one-sigma constraints and correlation matrix deriving from the measurements of statistically optimal observables in a circular collider (CC-)like benchmark run scenario.

Figure 24. Global one-sigma constraints and correlation matrix deriving from the measurements of statistically optimal observables, in an ILC-like benchmark run scenario.

Figure 25. Global one-sigma constraints and correlation matrix arising from the measurement of statistically optimal observables in a CLIC-like benchmark run scenario.

LCWS24, Tokyo, Japan

ILC500+ ILC1000

Ultimate precision in global EFT fit requires a collider with two energy stages and polarization

> CLIC380+ CLIC1500+ CLIC3000

Warning: versions with old luminosity

13

marcel.vos@ific.uv.es

SMEFT fit HL-LHC + e+e- collider

four-quark operators (qqtt): two-fermion top-boson: Two-lepton-two-top (lltt):

no progress $O(1) \rightarrow O(0.1)$ $XXX \rightarrow O(10^{-1} - 10^{-3})$

EFT for e+e-: Durieux et al., arXiv:1807.02121 top EW fit HL-LHC/e+e-: Durieux et al., arXiv:1907.10619 Snowmass top couplings, arXiv:2205.02140 Global SMEFT fit, J. De Blas et al., arXiv:2206.08326 Snowmass report, Schwienhorst et al., arXiv:2209.11267

Cornet

see talk by F.

Snowmass SMEFT fit based on Durieux et al.,

with updated operating scenarios,

SMEFT fit HL-LHC + e+e- collider

Mapping the SMEFT at High-Energy Colliders: from LEP and the (HL-)LHC to the FCC-ee

2024 Eugenia Celada,^a Tommaso Giani,^{b,c} Jaco ter Hoeve,^{b,c} Luca Mantani,^d Juan Rojo,^{b,c} Alejo N. Rossia,^a Marion O. A. Thomas,^a and Eleni Vryonidou^a

- Apr ^a Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- ^bNikhef Theory Group, Science Park 105, 1098 XG Amsterdam, The Netherlands 19
- ^cDepartment of Physics and Astronomy, Vrije Universiteit Amsterdam, NL-1081 HV Amsterdam, The Netherlands
- ^dDAMTP, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom
- E-mail: eugenia.celada@manchester.ac.uk, tgiani@nikhef.nl, j.j.ter.hoeve@vu.nl,
- luca.mantani@maths.cam.ac.uk, j.rojo@vu.nl, alejo.rossia@manchester.ac.uk,
- [hep-ph] marion.thomas@manchester.ac.uk, eleni.vryonidou@manchester.ac.uk

ABSTRACT: We present SMEF1T3.0, an updated global SMEFT analysis of Higgs, top quark, and diboson 7 production data from the LHC complemented by electroweak precision observables (EWPOs) from LEP 2809 and SLD. We consider recent inclusive and differential measurements from the LHC Run II, alongside with a novel implementation of the EWPOs based on independent calculations of the relevant EFT contributions. We estimate the impact of HL-LHC measurements on the SMEFT parameter space when added on top of SMEFIT3.0, through dedicated projections extrapolating from Run II data. We quantify the significant 4 constraints that measurements from two proposed high-energy circular e^+e^- colliders, the FCC-ee and the

Fit includes Higgs, top and EW sectors

Celada et al., arXiv:2404.12809

The top Yukawa coupling at a lepton collider

250 GeV run offers "indirect" sensitivity to the top Yukawa

$\Delta y/y < 1\%$ from H \rightarrow	gg
$\Delta y/y < 1\%$ from H \rightarrow	γγ

Mitov et al., arXiv:1805.12027

Jung et al., arXiv:2006.14631

Assuming the SM for all other couplings

500+ GeV run offers a "direct" measurement in ttH production

<3% precision Price robust in global analysis Jung

Price et al., arXiv:1409.7157

Jung et al.,arXiv:2006.14631

Valu	ues in % units	LHC	HL-LHC	ILC500	ILC550	ILC1000	CLIC
δy_t	Global fit	12.2	5.06	3.14	2.60	1.48	2.96
	Indiv. fit	10.2	3.70	2.82	2.34	1.41	2.52

Top-SMEFT fit on prospects, de Blas et al., 2206.08326

LCWS24, Tokyo, Japan

marcel.vos@ific.uv.es

Top operators and loop contributions

Clear complementarity between hadron and lepton colliders: constrain qqtt operators at LHC; eett operators in e+e-; two-fermion operators benefit from both data sets

However, eett operators have an important impact on $e+e- \rightarrow$ ZH cross section (see Asteriadis, Dawson, Giardino, Szafron, arXiv:2406.03557)

Numerically, coefficients are similar. Threat to indirect self-coupling extraction, or opportunity to constrain top operators with 250 GeV data!!

LCWS24, Tokyo, Japan

marcel.vos@ific.uv.es

What about HL-LHC?

LHC and HL-LHC can access the operators in off-shell the analysis

Extrapolation from ATLAS work space: weak O(1-10 TeV-2) bounds are possible

From Maria Moreno, ECFA Higgs/top/EW factory study conveners meeting

Bell-style experiments

Afik & de Nova, EPJPlus

Two well-separated & independent detectors

Source of quantum-correlated "entangled" photons Outcome of the Bell tests decides between "Einstein" (local realistic theory with hidden variables) and "Bohr" (probablistic interpretation of QM)

LCWS24, Tokyo, Japan

Observation of entanglement

ATLAS, TOP '23, arXiv:2311.07288

D < -1/3 top spin correlations are "quantum" (new! Opens the door to QI@LHC)

Quantum entanglement observed in top quark pair production

LCWS24, Tokyo, Japan

marcel.vos@ific.uv.es

Quantum information at lepton colliders?

Quantum tops at circular lepton colliders

Fabio Maltoni,^{a,b,c} Claudio Severi,^d Simone Tentori,^c Eleni Vryonidou^d
^a Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46, 40126 Bologna, Italy
^bINFN, Sezione di Bologna, Bologna, Italy
^c Center for Cosmology, Particle Physics and Phenomenology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
^d Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom *e*-mail: fabio.maltoni@unibo.it, claudio.severi@manchester.ac.uk, simone.tentori@uclouvain.be, eleni.vryonidou@manchester.ac.uk
ABSTRACT: We study the quantum properties of top quark pairs in lepton colliders with

unpolarised beams, including spin correlations, entanglement, and violation of Bell inequalities. We present analytical results in the SM and in the SMEFT and discuss several practical aspects, like the choice of quantisation axes and $t\bar{t}$ threshold effects. We also note a correspondence between parity symmetry and entanglement. We find that quantum observables exhibit a rich phenomenology in the SM, and can also provide additional leverage in detecting new physics residing at higher scales.

"the entanglement presence criterion is always satisfied for colliders running above the tt threshold. For Bell violation we showed that prospects for observing it improve at larger centre-of-mass energies and in specific phase space regions but would still require percent level experimental precision."

Study at moderate-to-high-energy lepton colliders, including beam polarization?

Summary

Top quark properties from threshold scan:

- motivation from EW fit anno 2050
- new fast-sim samples are being analyzed
- assessing FCCee environment with significant synchrotron losses
- revisiting selection: high and robust efficiency seems feasible
- using shape information for Yukawa extraction

Top quark couplings:

Several groups have public results for SMEFT fits of the top sector, including e+e- prospects for different colliders from Durieux et al.

Next step: include loop effects and study top physics below threshold, interplay with Higgs/EW sector in detail

Entanglement & quantum information

Plenty of room for contributions!!