Preliminary Investigation of a Higgs Factory based on Proton-Driven Plasma Wakefield Acceleration

July 2024 J. Farmer, A. Caldwell, and A. Pukhov

Motivation

Current state-of-the-art for accelerators is the LHC

- Why large?
- Why hadrons?

Alternatively, use a linac. Size determined by acceleration gradient.

Use proton driver for plasma wakefield acceleration

- High accelerating gradients
- Plenty of driver energy, no need for staging.
- Protons drive quasi-nonlinear wake suitable (in principle) for positron acceleration

Short driver efficiently excites wakefield

Use proton driver for plasma wakefield acceleration

• requires short proton driver

Short driver efficiently excites wakefield

Long driver suppresses its own wake

Focussing/defocussing fields in plasma

Resulting train of microbunches can drive large wakefields

Focussing/defocussing fields in plasma

Resulting train of microbunches can drive large wakefields

Short proton drivers revisited

It's worth revisiting short proton drivers.

Pros:

Higher gradients Higher efficiency Cons: Such drivers (L~150 µm) don't exist

Short proton drivers revisited

nature

physics

ARTICLES PUBLISHED ONLINE: 12 APRIL 2009; CORRECTED ONLINE: 24 APRIL 2009 | DOI: 10.1038/NPHYS1248

Proton-driven plasma-wakefield acceleration

Allen Caldwell¹*, Konstantin Lotov^{2,3}, Alexander Pukhov⁴ and Frank Simon^{1,5}

Caldwell et al. (2009)

A short proton wakefield driver is not a new idea (2009). Predates AWAKE! So why now?

Short proton drivers revisited

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 32, NO. 6, SEPTEMBER 2022

4100404

Record High Ramping Rates in HTS Based Superconducting Accelerator Magnet

H. Piekarz^D, Senior Member, IEEE, S. Hays, B. Claypool, M. Kufer^D, and V. Shiltsev, Fellow, IEEE

Piekarz et al. (2022)

Developments in fast-ramping magnets would allow rapid-cycling (~5 Hz) synchrotrons.

Would allow for competitive luminosities for a proton-driven Higgs factory *if* bunch length can be achieved.

Configuration

(Symmetric) Higgs factory: 125 GeV e^{-} colliding with 125 GeV e^{+}

We need to demonstrate

- efficiency
- stability

Configuration

Initial proton driver chosen to generate suitable wakefields

Moderately nonlinear wakefield allows acceleration of both electrons and positrons

Initial proton driver chosen to generate suitable wakefields

Initial proton driver chosen to generate suitable wakefields

Driver rapidly pinches

Highly nonlinear wakefield not suitable for positron acceleration

Good initial wakefields not sufficient:

- driver needs to evolve slowly
- counteract strong focussing wakefields

- $\sigma_z = 150 \ \mu m$ $\sigma_r = 240 \ \mu m$ $n_b = 1 \times 10^{11}$ $E = 400 \ GeV$ $\epsilon_N = tailored$
- 3 µm at head
- initially constant
- rises linearly to 75 μm

How can we generate a tailored emittance profile?

Most likely: with difficulty

BUT emittance is initially constant before growing monotonically

How can we generate a tailored emittance profile?

Most likely: with difficulty

BUT emittance is initially constant before growing monotonically

AWAKE Collaboration, PRL (2019)

Harness plasma instabilities?

Initial proton driver chosen to generate suitable wakefields

Initial proton driver chosen to generate suitable wakefields

Tailored emittance profile stops the bunch from pinching

BUT: protons "fall back" in the light frame

Initial proton driver chosen to generate suitable wakefields

Tailored emittance profile stops the bunch from pinching

BUT: protons "fall back" in the light frame

Protons are fast, but not that fast.

Driver evolution will also modify wakefield phase. Witness will "catch up" with the driver.

Protons are fast, but not that fast.

Driver evolution will also modify wakefield phase. I. I. 1 I. 1

Witness will "catch up" with the driver.

Change plasma density to keep phase constant

Change plasma density to keep phase constant

LCWS Tokyo, July 2024

We now have all the building blocks for Higgs factory

- Large accelerating wakefields
- Regions suitable for electron and positron acceleration
- Stable accelerating phase

Just (!) need to simulate acceleration

Plasma provides large accelerating fields, but also large focussing fields

- extremely small witness radius at high energy
 - ~0.3 μm for electrons at 125 GeV with 0.1 μm emittance
 - ~0.1 nm for positrons at 125 GeV with 0.1 μm emittance

Many headaches

- secondary ionization
- ion motion
- nonphysical effects in simulations

10¹¹ protons at 400 GeV 10¹⁰ electrons/positrons injected at 1 GeV

Full 3D simulations

- no ionization
- no ion motion
- energy spread is nonphysical!

First resolved simulations: 2D geometry (LCODE), frozen driver, electron witness.

LCWS Tokyo, July 2024

First resolved simulations: 2D geometry (LCODE), frozen driver, electron witness.

Energy gain (trivial for frozen driver)

Emittance growth due to ion motion (lithium)

Adiabatic focussing of witness during acceleration $1\mu m \rightarrow 0.23 \ \mu m$

Focussing field becomes increasingly nonlinear

Different longitudinal slices of the witness have different profiles

Head-to-tail variation of focussing fields.

Suggests adiabatic focussing allows witness to self-match to nonlinear focussing fields

Luminosity

Combine everything:

- Assume proton beams at 5 Hz, with 1000 bunches per beam
- Assume witness beams with 20% driver charge, 100 nm emittance*, ILC optics, and negligible energy spread

*Flat beams should be investigated

and this scheme is competitive:

1.7x10³⁴ cm⁻²s⁻¹

Proton Accelerator Parameter	Symbol	Unit	Value
Proton energy	E_p	GeV	400
Refill Time	au	s	0.2
Bunch population	N_p	10^{10}	10
Number of bunches	n		1000
Longitudinal RMS	σ_z	μm	150
Transverse RMS	$\sigma_{x,y}$	μm	240
Normalized transverse emittance	$\epsilon_{T,p}$	μm	$3-75~\mu m$
Power Usage	Р	MW	150
Plasma Parameters	Symbol	Unit	Value
e^- cell Length	$L_{e^{-}}$	m	240
e^+ cell Length	L_{e^+}	m	240
density - upstream	n_p	$10^{14} \ {\rm cm}^{-3}$	3.2
density - downstream	n_p	$10^{14}~{\rm cm}^{-3}$	5.2
e^{\pm} Bunch Parameters	Symbol	Unit	Value
Injection Energy	$E_{e,in}$	GeV	1
Final Energy	E_e	GeV	125
Bunch population	$N_{e^{\pm}}$	10^{10}	2
Normalized transverse emittance	$\epsilon_{T,e}$	nm	100
Hor. beta fn.	β_x^*	$\rm mm$	13
Ver. beta fn.	β_y^*	$\rm mm$	0.41
Hor. IP size.	σ_x^*	nm	73
Ver. IP size.	σ_y^*	nm	13
e^-e^+ Collider Parameter	Symbol	Unit	Value
Center-of-Mass Energy	$E_{\rm cm}$	GeV	250
Average Collision Rate	f	kHz	5
Luminosity	L	${\rm cm}^{-2}{\rm s}^{-1}$	1.7×10^{34}

Luminosity

Combine everything:

- Assume proton beams at 5 Hz, with 1000 bunches per beam
- Assume witness beams with 20% driver charge 100 nm

CIN-2S-1

¹ar Preliminary Investigation of a Higgs Factory based on Proton-Driven Plasma Wakefield Acceleration Hor. IP size. σ_x^* Ver. IP size. σ_u^* e^-e^+ Collider Parameter Symbol Center-of-Mass Energy $E_{\rm cm}$ Average Collision Rate f Luminosity L

Proton Accelerator Parameter

Proton energy

Refill Time

Bunch population

Number of bunches

Longitudinal

Symbol

 E_p

 τ

 N_{p}

Unit

 GeV

 \mathbf{S}

 10^{10}

um

m

GeV

 10^{10}

 $\mathbf{m}\mathbf{m}$

 $\mathbf{m}\mathbf{m}$

nm

nm

Unit

GeV

kHz

Value

400

0.2

10

1000

150

240

 $3 - 75 \ \mu m$ 150Value

> 240240

3.25.2

Value 1

125

2

10013

0.41

73

13

Value

250

5

 $cm^{-2}s^{-1}$ 1.7 × 10³⁴

1.7x

and thi

a

*Flat

suuve:

Upgrade path

Witness energy gain limited by dispersion of driver.

Witness energy gain scales as

$$\gamma_W \sim \gamma_D^{3/2}$$

$t\bar{t}$ collider with 525 GeV driver.

HALHF-like 500 GeV electron witness with 1 TeV driver.

Conclusions and outlook

Proof-of-principle simulations for stability and energy gain (evolving driver, 3D simulations)

Proof-of-principle simulations for emittance control (electron witness, frozen driver, 2D simulations)

Key challenges:

- short proton bunches with high rep rate
- PWFA acceleration of positron bunches
- long plasma stages with 100% ionization at high rep rate

~ Backups ~

Footprint

Fits on the Fermilab site (P5 review)

Picking the driver: efficiency

Optimal length for proton driver

Picking the driver: efficiency

Optimal length for proton driver depends on charge density.

Picking the driver: efficiency

Everything scales with plasma frequency

1x10¹¹ protons gives

- plasma density 3x10¹⁴ cm⁻³
- driver length 150 μm
- Initial wakefields ~ 0.8GV/m

Pick 10% driver energy spread ⁶ for "realistic" longitudinal emittance

Cooling

Witness with 10% driver charge absorbs ~20% of wakefield energy

Witness with 20% driver charge absorbs ~40% of wakefield energy

Assume acceleration over 240m, gives required cooling as 12.5 kW/m

Moderately nonlinear wakefields retain their structure after loading.

Could use a second witness bunch to "mop up" excess wakefield