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Motivation

Current state-of-the-art
for accelerators is the LHC

* Why large?
* Why hadrons?

Alternatively, use a linac.
Size determined by
acceleration gradient.
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Proton-driven PWFA

Use proton driver for plasma wakefield acceleration
* High accelerating gradients
* Plenty of driver energy, no need for staging.

* Protons drive quasi-nonlinear wake
suitable (in principle) for positron acceleration
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Proton-driven PWFA

Use proton driver for plasma wakefield acceleration
* requires short proton driver

Short driver efficiently excites wakefield Long driver suppresses its own wake
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Proton-driven PWFA

Focussing/defocussing fields in plasma

Long proton beam

Self modulation instability
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Train of short microbunches

Resulting train of microbunches can drive large wakefields
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Proton-driven PWFA

Focussing/defocussing fields in plasma

ATWAIKE
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Resulting train of microbunches can drive large wakefields
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Short proton drivers revisited

It's worth revisiting short
proton drivers.

Pros: Cons:
Higher gradients Such drivers (L~150 um)
Higher efficiency don't exist
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Short proton drivers revisited

nature

ARTICLES

p ySlCS PUBLISHED ONLINE: 12 APRIL 2009; CORRECTED ONLINE: 24 APRIL 2009 | DOI:10.1038/NPHYS1248

Proton-driven plasma-wakefield acceleration

Allen Caldwell'*, Konstantin Lotov?3, Alexander Pukhov* and Frank Simon'®

Caldwell et al. (2009)

A short proton wakefield driver is not a new idea (2009).
Predates AWAKE! So why now?
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https://www.nature.com/articles/nphys1248

Short proton drivers revisited

[EEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 32, NO. 6, SEPTEMBER 2022 4100404

Record High Ramping Rates in HTS Based
Superconducting Accelerator Magnet

H. Piekarz ', Senior Member, IEEE, S. Hays, B. Claypool, M. Kufer*”, and V. Shiltsev, Fellow, IEEE

Piekarz et al. (2022)

Developments in fast-ramping magnets would allow rapid-cycling
(~5 Hz) synchrotrons.

Would allow for competitive luminosities for a proton-driven Higgs
factory if bunch length can be achieved.
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Configuration

(Symmetric) Higgs factory:
125 GeV e colliding with 125 GeV e*

We need to demonstrate
 efficiency
 stability
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Configuration

Initial proton driver
chosen to generate

suitable wakefields 1:

Moderately nonlinear
wakefield allows
acceleration of both

electrons and 11

positrons

mm
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Picking the driver: stability

Initial proton driver
chosen to generate
suitable wakefields

y (mm)
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Picking the driver: stability

Initial proton driver
chosen to generate
suitable wakefields

Driver rapidly pinches

Highly nonlinear
wakefield not suitable
for positron
acceleration
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Picking the driver: stability

Good initial wakefields not sufficient:
 driver needs to evolve slowly
* counteract strong focussing wakefields
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Picking the driver: stability

o.=150 vigg 0.2 . . | 12000
or = 240 Him + 10000
Np = 1x10" o5 L
E =400 GeV - - 8000
ex = tailored S
E 0.1 - 6000
* 3 um at head £
o e, -| 4000
* initially constant 0.05 |
* rises linearly to 75 pm 1™
0-3 zls 0 i
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Picking the driver: stability

How can we generate
a tailored emittance
profile?

Most likely:
with difficulty

BUT emittance is initially
constant before growing
monotonically
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Picking the driver: stability

How can we generate

a tailored emittance (a) Space (mm) (b) Space (mm) (c) Space (mm)
-1 0 1 . =1 _:: 1 oo -1 0 1

pr0f||6? —400 ” " —400 l

G—EDD- § : =200+
Most likely: g 0 o
with difficulty ) -
BUT emittance iS |n|t|a||y AWAKE Collaboration, PRL (2019)
constant before growing Harness plasma instabilities?
monotonically
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Acceleration: dephasing

Initial proton driver
chosen to generate

suitable wakefields
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Acceleration: dephasing

Initial proton driver
chosen to generate
suitable wakefields

Tallored emittance
profile stops the
bunch from pinching

BUT:
protons “fall back”
In the light frame
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Acceleration: dephasing

Initial proton driver
chosen to generate
suitable wakefields

Tallored emittance
profile stops the
bunch from pinching

BUT:
protons “fall back”
In the light frame
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Acceleration: dephasing

Protons are fast,
but not that fast.

Driver evolution
will also modify
wakefield phase.

Witness will “catch up
with the driver.

John Farmer, MPP
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Acceleration: dephasing

PrOtonS are faSt! g \\H‘-\_ ,f'f / H‘*-.____ /-’ / -_ﬁ\\"x,___ / L
but not that fast. \—/ =

Driver evolution /N N\ /N |
] . ' \\ / \ _.e’f Y
will also modify \__/ N

wakefield phase. N1/ \ / \ /

I 11 RL 1] \‘\\ / g ‘\\"-.\ / -\\'\._
Witness will “catch up /N //\
with the driver. \ | / \/

Change plasma density to keep phase constant
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Acceleration: dephasmg

1
Change plasma density
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Acceleration

We now have all the building blocks for Higgs factory

* Large accelerating wakefields

* Regions suitable for electron and positron acceleration
e Stable accelerating phase

Just (!) need to simulate acceleration

John Farmer, MPP LCWS Tokyo, July 2024
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Acceleration

Plasma provides large accelerating fields,
but also large focussing fields

* extremely small withess radius at high energy

— ~0.3 pum for electrons at 125 GeV with 0.1 um emittance
— ~0.1 nm for positrons at 125 GeV with 0.1 um emittance

Many headaches

e secondary ionization

* lon motion

* nonphysical effects in simulations



Acceleration

10" protons at 400 GeV

1019 electrons/positrons
Injected at 1 GeV

Full 3D simulations
* NO Ionization
°* NO Ion motion

* energy spread Is
nonphysical!
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Acceleration
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First resolved simulations:

2D geometry (LCODE), frozen driver, electron witness.
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Acceleration
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First resolved simulations:
2D geometry (LCODE), frozen driver, electron witness.
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Acceleration

140

Energy gain o
(trivial for frozen driver)
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Acceleration

0.0035

Adiabatic focussing of
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Acceleration

Different longitudinal
slices of the witness
have different profiles

Head-to-tall variation
of focussing fields.
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px/mc

Acceleration
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Suggests adiabatic focussing allows witness
to self-match to nonlinear focussing fields
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Luminosity

Combine everything:

* Assume proton beams at 5 Hz,
with 1000 bunches per beam

* Assume witness beams with
20% driver charge,
100 nm emittance*, ILC optics,
and negligible energy spread

*Flat beams should be investigated

and this scheme is competitive:

1.7x10% cm=st

John Farmer, MPP LCWS Tokyo, July 2024

Proton Accelerator Parameter |Symbol| Unit Value
Proton energy E, GeV 400
Refill Time T S 0.2
Bunch population N, 10t 10
Number of bunches n 1000
Longitudinal RMS o, pm 150
Transverse RMS Ty pm 240
Normalized transverse emittance| er, pm 3 — 75 pm
Power Usage P MW 150
Plasma Parameters Symbol Unit Value
e~ cell Length L, m 240
et cell Length L4 m 240
density - upstream ny [10" cm™® 3.2
density - downstream n, [10' em™? 5.2
e® Bunch Parameters Symbol|  Unit Value
Injection Energy Ee in GeV 1
Final Energy E. GeV 125
Bunch population N+ 100 2
Normalized transverse emittance| €7, nm 100
Hor. beta fn. B mm 13
Ver. beta fn. By mm 0.41
Hor. IP size. ol nm 73
Ver. IP size. o, nm 13
e~ e’ Collider Parameter Symbol Unit Value
Center-of-Mass Energy Eem GeV 250
Average Collision Rate f kHz 5
Luminosity L em~?s7t 1.7 x 103
33



Luminosity

Proton Accelerator Parameter |Symbol| Unit Value
. . Prot-?n eeergy E, GeV "10‘0
C O m b I n e eve ryth I n g ' Bllli?lﬁ:)lo'}I)‘:;:;iOH NT 1510 (if‘]z
Number of bunches 1000
* Assume proton beams at 5 Hz, 150
with 1000 bunches per beam 375 ym

* Assume withess beams wi

GeV

10! 2
*Fla nsverse emittance| e€r.e nm 100
Hor. beta fn. Johs min 13
Ver. beta fn. By mm 0.41
Hor. IP size. ol nm 73
Ver. IP size. o, nm 13
and thl e~ e’ Collider Parameter Symbol|  Unit Value
Center-of-Mass Energy Eem GeV 250
1 7X \ g _ Average Collision Rate f kHz 5
. Luminosity L em %s7t 1.7 x 10
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Upgrade path

Witness energy gain limited by dispersion of driver.

Witness energy gain scales as

3/2

Yw™ ¥p

tt collider with 525 GeV driver.
HALHF-like 500 GeV electron withess with 1 TeV driver.
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Conclusions and outlook

Proof-of-principle simulations for stability and energy gain
(evolving driver, 3D simulations)

Proof-of-principle simulations for emittance control
(electron witness, frozen driver, 2D simulations)

Key challenges:

* short proton bunches with high rep rate

 PWFA acceleration of positron bunches

* long plasma stages with 100% ionization at high rep rate

John Farmer, MPP LCWS Tokyo, July 2024
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~ Backups ~

LCWS Tokyo, July 2024
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Footprint

Fits on the Fermilab site
(P5 review)
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Picking the driver: efficiency

Optimal length
for proton driver
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Picking the driver: efficiency

Optimal length
for proton driver
depends on charge density.
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Picking the driver: efficiency

Everything scales with
plasma frequency

1x10"" protons gives

e plasma density 3x10* cm3

Wake amplitude (1/E;)

* driver length 150 pm
* |nitial wakefields ~ 0.8GV/m

Pick 10% driver energy spread

for “realistic” longitudinal emittance
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Cooling

Witness with 10% driver charge
absorbs ~20% of wakefield energy

Witness with 20% driver charge
absorbs ~40% of wakefield energy

Assume acceleration over 240m,
gives required cooling as 12.5 kW/m



Cooling

Moderately nonlinear wakefields retain their structure after
loading.

Could use a second witness bunch to “mop up” excess wakefield

John Farmer, MPP LCWS Tokyo, July 2024

44



