

SRF programs towards High-Q/High-G cavities in IJCLab

Akira Miyazaki, Mohammed Fouaidy, Nicolas Gandolfo, David Longuevergne,

Guillaume Olry, Mael Vannson, Lê My Vogt

CNRS/IN2P3/IJCLab Université Paris-Saclay

Matthieu Baudrier, Enrico Cenni, Fabien Eozénou, Grégoire Jullien, Luc Maurice

CEA/IRFU/DACM Université Paris-Saclay

Introduction : Instances around SUPRATech

Introduction : History summary and series production

Prototyping Phase

Low- β cavities for protons & heavy ions \rightarrow collider cavities

FCC/PERLE cavities (800 MHz)

ILC cavities (1.3 GHz)

Next future colliders: priority in Higgs boson

Energy Recovery Linac (ERL)

PERLE project at IN2P3/IJCLab

Ultimate goal of PERLE: first multi-turn ERL designed to operate at 10 MW (20 mA, $87 \rightarrow 250 \rightarrow 500$ MeV)

→ A hub to explore a broad range of accelerator phenomena and to validate technical choices improving accelerators for future energy and intensity frontier machines

R &D targets

For FCC/PERLE

Duty cycle =100%

<1%

Extremely high-Q at relatively high gradient in large cavities (800 MHz) For ILC250

Extremely high gradient with relatively high-Q in a large # of cavities (~8000)

- 300C baking or N-doping seems like the best option for FCC/PERLE
- 120C or 2-step baking for higher gradient \rightarrow ILC
- Clean vacuum baking furnace is key in this research domain

300C baking in IN2P3/IJCLab

- Vacuum furnace originally used for 600C annealing of ESS spoke cavities
 M. Fouaidy et al., II
- A cryogenic pump, pure Ar for purging etc
- New R&D with DESY 1.3 GHz cavities

M. Fouaidy et al., IEEE Transactions on Applied Superconductivity, vol. 28, no. 4, pp. 1-6 (2018)

1st test is always far from ideal (CV1 at CEA Saclay on June 18 2024)

1st test results

The mid-T baked cavity showed significantly high residual resistance ΔR_{res} > 46 nΩ
→ Is it due to contamination of furnace/cavity or magnetic field effect?

Magnetic field sensitivity (1.3 GHz cavities)

- We could explain the degradation of Q due to non-optimized magnetic shield and high sensitivity to trapped flux in mid-T baked cavities
- \rightarrow Improving magnetic shield and installing magnetic field mapping at CEA after summer

Conclusions

- IJCLab has been a world-leading laboratory of SRF cavities for proton / heavy ion linear accelerators
 - R&D of Spiral2, ESS, MYRRHA, PIPII cavities are coming to the final phase
 - Contributions to collider projects has been in beam dynamics and nanobeams (ATF), RF couplers (Eu-XFEL), temperature sensors (LHC), etc
- IJCLab is expanding R&D activities of SRF cavities towards future colliders
 - FCC / PERLE 800 MHz cavities: super high-Q
 - ILC 1.3 GHz cavities: super high-G
- Advanced heat treatment is the key R&D subject
 - IJCLab is equipped with a clean vacuum furnace originally used for the ESS spoke cavity project
 - Mid-T baking for super high-Q
 - 1st mid-T baked results in 1.3 GHz cavity \rightarrow studies on-going
- Future prospects
 - 2nd test with improved magnetic field at CEA (July 18), test at STF in KEK (October)
 - Heat treatment of the 800 MHz prototype cavity
- Collaborations
 - ERL collaboration with KEK via FJPPL
 - FCC: collaboration with CERN/FNAL
 - PERLE: collaboration with CERN/JLAB

backup

Magnetic field sensitivity

- N-doping/mid-T bake makes cavities sensitive to trapped magnetic fields
- Factor 10 better magnetic shield may be necessary
- Flux expulsion technique with higher thermal gradient
- Advantage of mid-T baking is based on a compromise between ultimately high-Q and realistic trapped flux level in a cryomodule
- EP vs BCP
 - EP + mid-T bake has been studied intensively
 - EP is mandatory for very high gradient but may not be for high-Q at decent field
 - BCP is simpler and less expensive
 - The limited number of tests have been performed for BCP + mid-T baking → results are somewhat contradictory
- Low-T bake could also be an option for FCC/PERLE
 - Not enough margin even in the best case but probably more conservative

List of the different recipes

