Simulations Luminosity Spectra of Multi-TeV PWFA γγ Colliders

Advanced Accelerator Concepts LCWS2024

Tim Barklow July 09, 2024

Stanford University

Simulation of 15 TeV yy Collider

Replace 62.5 GeV C³ e- beam w/ 7500 GeV PWFA e- beam and simulate $\gamma\gamma$ Collisions using CAIN MC

Technology	PWFA	γγ PWFA	
Aspect Ratio	Round	Round	
CM Energy	15	15	
Single beam energy (TeV)	7.5	7.5	
Gamma	1.47E+07	1.4E+07	
Emittance X (mm mrad)	0.1	0.12	
Emittance Y (mm mrad)	0.1	0.12	
Beta* X (m)	1.50E-04	0.30E-04	
Beta* Y (m)	1.50E-04	0.30E-04	
Sigma* X (nm)	1.01	0.48	
Sigma* Y (nm)	1.01	0.48	
N_bunch (num)	5.00E+09	6.2E+09 (or 5.00E+09)
Freq (Hz)	7725	7725	
Sigma Z (um)	5	5	
Geometric Lumi (cm ² s ¹)	1.50E+36	6.58E+36	

Start with x=4.8 because this was considered the typical $\gamma\gamma$ collider x value before this study was performed

x=4.8 adjust parameters to get ~ 100 % conversion w/ linear QED

 $\mathbf{x} = 4.8 \implies 9100 \text{ GeV } \mathbf{e}^- + 0.034 \text{ eV } \mathbf{\gamma} \quad (\lambda = 36 \ \mu\text{m}) \quad \mathbf{a}_{\gamma FWHM} = 2.1 \text{ mm} \quad \mathbf{\sigma}_{\gamma z} = 0.79 \text{ mm} \quad \mathbf{d}_{cp} = 2.4 \text{ mm}$ $\mathbf{\sigma}_{ez} = 5 \ \mu\text{m} \quad \mathbf{N}_{e^-} = 1 \text{ nC} \quad \mathbf{\gamma} \mathbf{\varepsilon}_{x,y} = 120 \text{ nm} \quad 2\mathbf{P}_c \lambda_e = -0.9 \qquad \mathbf{E}_{pulse} = 4400 \text{ J}$

 E_{γ} (GeV)

 E_{γ} (GeV)

x=4.8 , parameters with ~ 100 % conversion w/ linear QED

 $\mathbf{x} = 4.8 \implies 9100 \text{ GeV } \mathbf{e}^- + 0.034 \text{ eV } \boldsymbol{\gamma} \quad (\lambda = 36 \ \mu\text{m}) \quad \mathbf{a}_{\gamma FWHM} = 2.1 \text{ mm} \quad \boldsymbol{\sigma}_{\gamma z} = 0.79 \text{ mm} \quad \mathbf{d}_{cp} = 2.4 \text{ mm}$ $\boldsymbol{\sigma}_{ez} = 5 \ \mu\text{m} \quad \mathbf{N}_{e^-} = 1 \text{ nC} \quad \boldsymbol{\gamma} \boldsymbol{\varepsilon}_{x,y} = 120 \text{ nm} \quad 2\boldsymbol{P}_c \lambda_e = -0.9 \qquad \mathbf{E}_{pulse} = 4400 \text{ J}$

6

 E_{γ} (GeV)

x=4.8 dial back E_{pulse} to get $\xi^2 < 1$

 $\mathbf{x} = 4.8 \implies 9100 \text{ GeV } \mathbf{e}^- + 0.034 \text{ eV } \boldsymbol{\gamma} \quad (\boldsymbol{\lambda} = 36 \,\mu\text{m}) \quad \boldsymbol{a}_{\gamma FWHM} = 2.1 \text{ mm} \quad \boldsymbol{\sigma}_{\gamma z} = 0.79 \text{ mm} \quad \boldsymbol{d}_{cp} = 2.4 \text{ mm}$ $\boldsymbol{\sigma}_{ez} = 5 \,\mu\text{m} \quad N_{e^-} = 1 \text{ nC} \quad \boldsymbol{\gamma} \boldsymbol{\varepsilon}_{x,y} = 120 \text{ nm} \quad 2\boldsymbol{P}_c \boldsymbol{\lambda}_e = -0.9 \qquad \text{E}_{pulse} = 260 \text{ J}$

x=40 use spreadsheet bunch charge of N_e=5x10⁹

 $\boldsymbol{x} = 40 \implies 7875 \text{ GeV } \boldsymbol{e}^- + 0.33 \text{ eV } \boldsymbol{\gamma} \quad (\boldsymbol{\lambda} = 3.7 \ \mu\text{m}) \quad \boldsymbol{a}_{\gamma FWHM} = 0.24 \text{ mm} \quad \boldsymbol{\sigma}_{\gamma z} = 270 \ \mu\text{m} \quad \boldsymbol{d}_{cp} = 0.82 \text{ mm}$ $\boldsymbol{\sigma}_{ez} = 5 \ \mu\text{m} \quad \mathbf{N}_{e^-} = 5 \times 10^9 \quad \boldsymbol{\gamma} \boldsymbol{\varepsilon}_{x,y} = 120 \text{ nm} \quad 2\boldsymbol{P}_c \boldsymbol{\lambda}_e = -0.9 \qquad \mathbf{E}_{pulse} = 590 \text{ J}$

15 TeV and x=40 Turn on coherent processes

 $\boldsymbol{x} = 40 \implies 7875 \text{ GeV } \boldsymbol{e}^- + 0.33 \text{ eV } \boldsymbol{\gamma} \quad (\boldsymbol{\lambda} = 3.7 \ \mu\text{m}) \quad \boldsymbol{a}_{\gamma FWHM} = 0.24 \text{ mm} \quad \boldsymbol{\sigma}_{\gamma z} = 270 \ \mu\text{m} \quad \boldsymbol{d}_{cp} = 0.82 \text{ mm}$ $\boldsymbol{\sigma}_{ez} = 5 \ \mu\text{m} \quad \mathbf{N}_{e^-} = 5 \times 10^9 \quad \boldsymbol{\gamma} \boldsymbol{\varepsilon}_{x,y} = 120 \text{ nm} \quad 2\boldsymbol{P}_c \boldsymbol{\lambda}_e = -0.9 \qquad \mathbf{E}_{pulse} = 590 \text{ J}$

Halfway through the collision CAIN complains:

(SUBR.COHPAR) Algorithm of coherent pair generation wrong. Call the programmer prob,pmaxco= 8.309E-01 8.000E-01

Solution:

number of macro particles produced per coherent beamstrahlung photon = $1 \rightarrow 0.01$ number of pairs of macro particles produced per coherent e+e- pair = $1 \rightarrow 0.0001$ number of macro particles produced per incoherent particle = $1 \rightarrow 0.01$

15 TeV and x=40 Turn on coherent processes

 $x = 40 \implies 7875 \text{ GeV } e^- + 0.33 \text{ eV } \gamma \quad (\lambda = 3.7 \ \mu\text{m}) \quad a_{\gamma FWHM} = 0.24 \text{ mm} \quad \sigma_{\gamma z} = 270 \ \mu\text{m} \quad d_{cp} = 0.82 \text{ mm}$ $\sigma_{ez} = 5 \ \mu \text{m} \quad \text{N}_{e^-} = 5 \times 10^9 \quad \gamma \varepsilon_{x,y} = 120 \ \text{nm} \quad 2P_c \lambda_e = -0.9$ $E_{pulse} = 590 J$ Luminosity Spectrum (γ, γ) 10^{0} EM fields as high as 2×10^{14} V/m 10⁰ 1500 1500 EM fields as high as 0.8×10^{18} V/m = $0.6 \times$ Schwinger . "ไม่สุดารูครองการทำเนครองสอบ เรื่องสองสองสองสองสองสองสองสองไปไม่ไปเมืองได $/\mathrm{cm}^2/\mathrm{s/bin})$ dL/dW (10^{33} /cm²/s/bin) 10-2 10^{-1} v05617 v05706 $\xi_{non-linear OED}^2 = 5.9$ $(10^{35}$ dL/dW 10^{-4} $\approx 45\%$ Compton conversion efficency 10^{-2} $\approx 45\%$ Compton conversion efficency Lumi 20% = 3.0×10^{35} cm⁻² s⁻¹ Lumi 20% = 0.14×10^{35} cm⁻² s⁻¹ No coherent pairs 10^{-3} 10^{-6} yes coherent pairs 15 5 10 10 15 0 E_{vv} (TeV) E_{vv} (TeV)

Coherent pair production eats up the 7.5 TeV photons and produces many e+ that pinch the e- beam leading to higher fields and even more coherent pair production.

e⁻γ collisions at $E_{e_{\gamma}}$ =140 GeV I.P. geometric e⁻ σ_x, σ_y =5.1 nm

During the collision, the e^+ from coherent e^+e^- production are focused by the EM field of the oncoming $e^$ beam. This leads to focusing (pinching) of the e^- beam. This pinching creates very high fields which leads to even more coherent pair production and even higher fields.

x=1.2x10⁵ (1 keV γ) not affected as much by coherent processes

dL/dW (10³⁴ $/\mathrm{cm}^2/\mathrm{s/bin})$

therefore the current CAIN MC is valid.

Compare 15 and 10 TeV

10 TeV yy Luminosity: Compton vs erer Collider

The top 20% Compton $\gamma\gamma$ Lumi is only 38% larger than the top 20% from e^-e^- beamstrahlung. But the pileup for the e^-e^- is $\langle \mu \rangle = 570$ which is not too different from FCC-hh $\langle \mu \rangle = 1000$

15 TeV Compton Collider $\gamma\gamma$ $e^-\gamma$ $\gamma e^ e^-e^-$

10 TeV Compton Collider $\gamma\gamma$ $e^-\gamma$ $\gamma e^ e^-e^-$

10 TeV e^-e^- Collider $\gamma\gamma$ $e^-\gamma$ $\gamma e^ e^-e^-$

Summary

Working with a fixed, specific set of round electron beam parameters (varying only the beam energy as needed):

- Not surprisingly, it is not straightforward to extrapolate a Compton $\sqrt{s} = 125 \text{ GeV } \gamma \gamma$ collider to 10 or 15 TeV
- A value of x = 4.8 requires $e^-e^- E_{cm} = 18.2$ TeV for $E_{cm} = 15$ TeV $\gamma\gamma$ and has very broad lumi spectrum
- A value x = 40 requires $e^-e^- E_{cm} = 15.6$ TeV for $E_{cm} = 15$ TeV $\gamma\gamma$. But when coherent processes are considered, EM fields produced by the tightly focused e^- beams lead to significant coherent beamstrahlung and e^+e^- pair-production for moderate values of x This is excaberated by the produced e^+ which pinch the e^- beams leading to even higher EM fields. These effects serve to diminish the $\gamma\gamma$ luminosity in the top 20% of the $\sqrt{\hat{s}}$ distribution. The mean number of pileup events is 26.2 (defined to include all events down to $\pi\pi$ threshold of $\sqrt{\hat{s}} = 0.3$ GeV).
- A multi-TeV γγ collider with extremely large values of x ≈ 10⁵, corresponding to soft x-ray Compton scattering, does not suffer as much from coherent processes. This is due to a larger number of trident processes e⁻γ → e⁻e⁺e⁻ It also gives the largest top 20% luminosity among the configurations considered so far, and has an e⁺e⁻/XCC-like luminosity spectrum with a relatively narrow peak near the maximum center-of-mass energy. The mean number of pileup events is 22.5 (defined to include all events down to ππ threshold of √s = 0.3 GeV).

Backup

Replace CAIN EM FFT EM Field Calculation with Bassetti-Erskine 2d Gaussian Expression

Replace CAIN EM FFT EM Field Calculation with Bassetti-Erskine 2d Gaussian Expression

Replace CAIN EM FFT EM Field Calculation with Bassetti-Erskine 2d Gaussian Expression

