Determination of \mathcal{CP} -violating HZZ interaction with polarised beams at the ILC

[arXiv: 2405.08494]

Cheng Li¹, Gudrid Moortgat-Pick²

¹School of Science Sun Yat-sen University

²II. Institut für Theoretische Physik Universität Hamburg

> LCWS 2024, Tokyo July 9, 2024

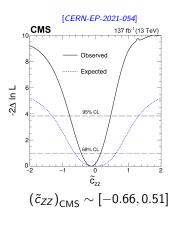
Motivation

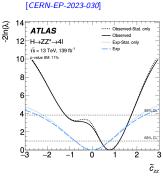
- 1. The CP violation in HVV interaction can be a possible source of the baryogenesis
- 2. Achieving highest precision for determination the CP properties of HZZ coupling via Z decay at the future e^+e^- collider.
- 3. Polarised e^+e^- beams can be used to improve the sensitivity to the CP properties of HZZ coupling, particularly for the transversely polarised beams

CP violation in Higgs to gauge bosons interaction

$$\mathcal{L}_{\mathsf{EFF}} = c_{\mathsf{SM}} \, Z_{\mu} Z^{\mu} H - \frac{c_{\mathsf{HZZ}}}{v} Z_{\mu\nu} Z^{\mu\nu} H - \frac{\widetilde{c}_{\mathsf{HZZ}}}{v} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} H \tag{1}$$

At LHC: $H \rightarrow 4\ell$ measurement:

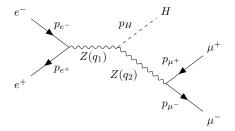




Probing the CP violation at e^+e^- collider

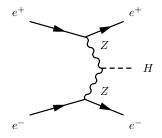
▶ Probe the CP-violation of HZZ at e^+e^- collider via Z decay from Higgs strahlung process or Z-fusion process

Higgs Strahlung



- ▶ Unpolarised study at CEPC [Q. Sha et al. 221]
- The effect of the initial polarized electrons is carried by the Z boson and transferred to the μ⁺μ⁻ pair by the Z decay

Z fusion



- ► Z-fusion study at 1 TeV [I. Bozovic et al. 24]
- ➤ Z-fusion process **cannot** carry the spin information of initial transversely polarised beams, since the final state electron and positron are unpolarised

Initial beam polarisation and spin density matrix

Spin formalism [H. E. Haber, 94']

polarisation matix for the initial beams:

$$\frac{1}{2}(1-\sigma\cdot P)_{\lambda\lambda'} = \frac{1}{2}\begin{pmatrix} 1-P^3 & P^1-iP^2 \\ P^1+iP^2 & 1+P^3 \end{pmatrix} = \frac{1}{2}\begin{pmatrix} 1-f\cos\theta_P & f\sin\theta_P e^{-i\phi_P} \\ f\sin\theta_P e^{i\phi_P} & 1+f\cos\theta_P \end{pmatrix}$$
(2)

Bouchiat-Michel formula:

$$u(p,\lambda')\bar{u}(p,\lambda) = \frac{1}{2}(1+2\gamma_5)\not p\delta_{\lambda\lambda'} + \frac{1}{2}\gamma_5(\not \xi_-^1\sigma_{\lambda\lambda'}^1 + \not \xi_-^2\sigma_{\lambda\lambda'}^2)\not p$$
(3)

$$v(p,\lambda')\overline{v}(p,\lambda) = \frac{1}{2}(1 - 2\gamma_5)\not p \delta_{\lambda\lambda'} + \frac{1}{2}\gamma_5(\not s_+^1 \sigma_{\lambda\lambda'}^1 + \not s_+^2 \sigma_{\lambda\lambda'}^2)\not p$$
 (4)

Spin density matrix for Higgs strahlung:

$$\rho^{ii'}(e^{+}e^{-} \to ZH) = \frac{1}{2} (\delta_{\lambda_{r}\lambda'_{r}} + P_{-}^{m} \sigma_{\lambda_{r}\lambda'_{r}}^{m}) \frac{1}{2} (\delta_{\lambda_{u}\lambda'_{u}} + P_{+}^{n} \sigma_{\lambda_{u}\lambda'_{u}}^{n}) M_{\lambda_{r}\lambda_{u}}^{i} M^{*i'}_{\lambda'_{r}\lambda'_{u}}$$

$$= (1 - P_{-}^{3} P_{+}^{3}) A^{ii'} + (P_{-}^{3} - P_{+}^{3}) B^{ii'} + \sum_{mn}^{1,2} P_{-}^{m} P_{-}^{n} C^{ii'}_{mn}$$
(5)

where C_{mn} is the part with transversely polarised beams.

Note that, one would not see any transverse polarisation effect when only one beams transversely polarised

Amplitude and CP-violation contribution

In order to simplify the analysis and get the idea of CP-violation effect, we only consider the additional contribution from the CP-odd term \tilde{c}_{HZZ}

$$|\mathcal{M}|^{2} = |c_{\text{SM}}\mathcal{M}_{\text{SM}} + \widetilde{c}_{HZZ}\widetilde{\mathcal{M}}_{HZZ}|^{2}$$

$$= |c_{\text{SM}}\mathcal{M}_{\text{SM}}|^{2} + |c_{\text{SM}}\widetilde{c}_{HZZ}\mathcal{M}_{\text{SM}}\widetilde{\mathcal{M}}_{HZZ}| + |\widetilde{c}_{HZZ}\widetilde{\mathcal{M}}_{HZZ}|^{2}$$
(6)

where

$$c_{\rm SM} \propto \cos \xi_{CP}, \qquad \widetilde{c}_{HZZ} \propto \sin \xi_{CP}$$
 (7)

Concerning the beam polarisation

$$\begin{split} |\mathcal{M}|^{2} &= (1 - P_{-}^{3} P_{+}^{3})(\cos^{2}\xi_{CP} \, \mathcal{A}_{\text{CP-even}} + \sin 2\xi_{CP} \, \mathcal{A}_{\text{CP-odd}} + \sin^{2}\xi_{CP} \, \widetilde{\mathcal{A}}_{\text{CP-even}}) \\ &+ (P_{-}^{3} - P_{+}^{3})(\cos^{2}\xi_{CP} \, \mathcal{B}_{\text{CP-even}} + \sin 2\xi_{CP} \, \mathcal{B}_{\text{CP-odd}} + \sin^{2}\xi_{CP} \, \widetilde{\mathcal{B}}_{\text{CP-even}}) \\ &+ \sum_{mn}^{1,2} P_{-}^{m} P_{+}^{n} \left(\cos^{2}\xi_{CP} \, \mathcal{C}_{\text{CP-even}}^{mn} + \sin 2\xi_{CP} \, \mathcal{C}_{\text{CP-odd}}^{mn} + \sin^{2}\xi_{CP} \, \widetilde{\mathcal{C}}_{\text{CP-even}}^{mn}\right) \end{split}$$
(8)

Only the interference term is CP-odd, which yield the CP-violation via triple-product correlations

$$\mathcal{A}_{\text{CP-odd}}, \mathcal{B}_{\text{CP-odd}} \propto \epsilon_{\mu\nu\alpha\beta} [p_{e^-}^{\mu} p_{e^+}^{\nu} p_{\mu^+}^{\alpha} p_{\mu^-}^{\beta}] \propto (\vec{p}_{\mu^+} \times \vec{p}_{\mu^-}) \cdot \vec{p}_{e^-}$$

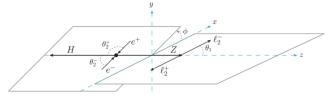
$$\tag{9}$$

$$C_{\text{CP-odd}}^{mn} \propto \epsilon_{\mu\nu\rho\sigma} [(p_{e^-} + p_{e^+})^{\mu} p_{\mu^+}^{\nu} p_{\mu^-}^{\rho} s_{e^-}^{\sigma}] \propto (\vec{p}_{\mu^+} \times \vec{p}_{\mu^-}) \cdot \vec{s}_{e^-}$$
(10)

▶ The idea of using transverse polarisation to probe the CP properties of HZZ coupling see also [S. Biswal et al.

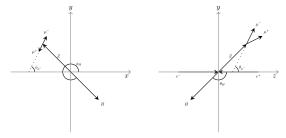
CP-sensitive observables

Coordinate systems with unpolarised or longitudinal polarised beams



lacktriangle The ϕ is the azimuthal angle difference between the μ^- - μ^+ plane and the Z-H plane

Coordinate systems with transversely polarised beams ($\vec{n}_{y} \propto \vec{s}_{e^{-}}$, $\vec{n}_{x} \propto \vec{s}_{e^{-}} \times \vec{p}_{e^{-}}$, $\vec{n}_{z} \propto \vec{p}_{e^{-}}$)

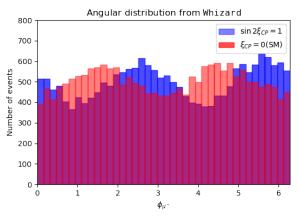


Angular distribution

Monte Carlo simulation by Whizard ¹
We fix the total cross-section to the SM tree-level cross-section, and use 100% parallel transverse polarisation beams

$$\sigma_{\text{tot}} = \cos^2 \xi_{CP} \, \sigma_{\text{SM}} + \sin^2 \xi_{CP} \tilde{\kappa}_{HZZ}^2 \, \tilde{\sigma}_{\text{HZZ}} = \sigma_{\text{SM}}, \tag{11}$$

$$P_{-}^{2} = P_{+}^{2} = 100\% (12)$$



► The angular distribution of muon azimuthal angle is sensitive to the CP-violation

¹http://whizard.hepforge.org

Azimuthal asymmetry

Construct the observables sensitive to CP-violation:

$$\mathcal{O}_{\mathit{CP}}^{\mathsf{T}} \propto \cos \theta_{\mathit{H}} \sin 2\phi_{\mu^{-}}, \quad \mathcal{O}_{\mathit{CP}}^{\mathit{UL}} \propto \cos \theta_{\mu} \sin \phi$$
 (13)

We can define the following asymmetries:

$$\mathcal{A}_{CP}^{T} = \frac{N(\mathcal{O}_{CP}^{T} < 0) - N(\mathcal{O}_{CP}^{T} > 0)}{N_{\text{tot}}}$$

$$\mathcal{A}_{CP}^{UL} = \frac{N(\mathcal{O}_{CP}^{UL} < 0) - N(\mathcal{O}_{CP}^{UL} > 0)}{N_{\text{tot}}}$$

$$(14)$$

$$\mathcal{A}_{CP}^{UL} = \frac{N(\mathcal{O}_{CP}^{UL} < 0) - N(\mathcal{O}_{CP}^{UL} > 0)}{N_{\text{tot}}}$$

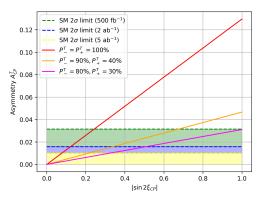
$$(15)$$

Statistical uncertainty (based on binomial distribution) of the Asymmetry:

$$\Delta \mathcal{A} = \sqrt{\frac{1 - \mathcal{A}^2}{N_{\text{tot}}}} \tag{16}$$

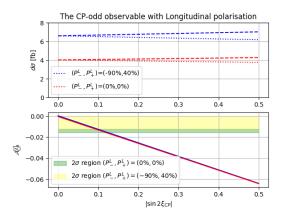
Variation of CP-mixing angle

We fix the total cross-section, and vary the CP-mixing angle $\xi_{\it CP}$



- ▶ This \mathcal{A}_{CP}^{T} is linearly depending on the CP-mixing angle $\sin 2\xi_{CP}$
- ▶ The stronger transverse polarisation leads to larger \mathcal{A}_{CP}^T .
- ► For $(P_{e^-}^T, P_{e^+}^T) = (80\%, 30\%)$ and $L = 500 \; {\rm fb}^{-1}$, one cannot distinguish the CP-violating case from CP-conserving case for any CP-mixing angle ξ_{CP} with only using \mathcal{A}_{CP}^T observable.

Variation of CP-mixing angle

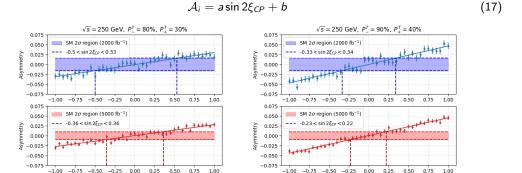


- ► The \mathcal{A}^{UL}_{CP} linearly depends on the $\sin 2\xi_{CP}$ as well, while the beams polarisation cannot change the \mathcal{A}^{UL}_{CP} .
- lacktriangle One can also simultaneously measure the ${\cal A}^{\it UL}_{\it CP}$ when initial beams are transversely polarised.

Determination of the CP-mixing angle

We made a linear fit for the asymmetries with respect to the $\sin 2\xi_{CP}$

sin 2Eco



▶ The fitting results for Monte-Carlo simulation data are basically match to the analytical calculation.

sin 2ξ_{CP}

Determination of the CP-mixing angle

Simply combine the two asymmetries

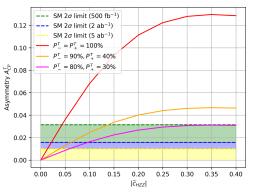
$$\chi_{\mathcal{A}_{CP}}^{2} = \left(\frac{\mathcal{A}_{CP}^{T}}{\Delta \mathcal{A}_{CP}^{T}}\right)^{2} + \left(\frac{\mathcal{A}_{CP}^{UL}}{\Delta \mathcal{A}_{CP}^{UL}}\right)^{2} < 3.81$$
 (18)

(P_{-}, P_{+})	\mathcal{L} $[ab^{-1}]$	$\sin 2\xi_{CP}$ limit (95% C.L.)			
Observables		\mathcal{A}_{CP}^{T}	Combine \mathcal{A}_{CP}^{T} & \mathcal{A}_{CP}^{UL}	${\cal A}^{UL}_{CP}$	
Transverse pol	arisation			_	
(80%, 30%)	2.0	[-0.50, 0.53]	[-0.113, 0.125]		
(80%, 30%)	5.0	[-0.36, 0.36]	[-0.068, 0.079]		
(90%, 40%)	2.0	[-0.33, 0.34]	[-0.118, 0.110]		
(90%, 40%)	5.0	[-0.23, 0.22]	[-0.066, 0.077]		
(100%, 100%)	5.0	[-0.082, 0.069]	[-0.056, 0.051]		
Longitudinal po					
(-80%, 30%)	2.0			[-0.119,0.082]	
(-80%, 30%)	5.0			[-0.066,0.063]	
(-90%, 40%)	2.0			[-0.085,0.106]	
(-90%, 40%)	5.0			[-0.059,0.062]	
(-100%, 100%)	5.0			[-0.047,0.053]	

^{*} The systematic uncertainties can be cancelled out by the CP-odd asymmetry, since the background contribution is basically CP-even.

Variation of the CP-odd coupling

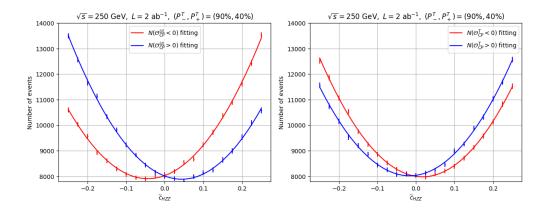
We fix $c_{\rm SM}=1$ and vary $\widetilde{c}_{\it HZZ}$, in this case $\sigma_{\rm tot}$ would be increased by $\widetilde{c}_{\it HZZ}$



- ▶ The \mathcal{A}_{CP}^{T} can reach to maximal when $\widetilde{c}_{HZZ} \sim 0.35$, and asymmetry \mathcal{A}_{CP}^{T} would decrease for much higher \widetilde{c}_{HZZ} .
- For $(P_{e^-}^T, P_{e^+}^T) = (80\%, 30\%)$ and $L = 500 \text{ fb}^{-1}$, one still cannot determine any CP-odd coupling \widetilde{c}_{HZZ} .

Determination of the CP-odd coupling

Monte Carlo simulation by Whizard



lacktriangle We made the quadratic function fit for the signal regions with varying \widetilde{c}_{HZZ}

$$N_i = a\widetilde{c}_{HZZ}^2 + b\widetilde{c}_{HZZ} + c \tag{19}$$

Determination of the CP-odd coupling

One can combine the signal regions

$$\chi_N^2 = \sum_i \left(\frac{(N(\mathcal{O}_i < 0) - N^{\text{SM}}(\mathcal{O}_i < 0))^2}{N(\mathcal{O}_i < 0)} + \frac{(N(\mathcal{O}_i > 0) - N^{\text{SM}}(\mathcal{O}_i > 0))^2}{N(\mathcal{O}_i > 0)} \right)$$
(20)

P, P_+	Luminosity $[ab^{-1}]$	$\widetilde{c}_{HZZ}~(\times 10^{-2})$ limit (95% C.L.)			
Observables		\mathcal{O}_{CP}^{T}	Combine \mathcal{O}_{CP}^{UL} & \mathcal{O}_{CP}^{T}	\mathcal{O}_{CP}^{UL}	
Transverse polarisation			-		
(80%, 30%)	2.0	[-4.45,4.65]	[-2.26, 1.93]	_	
(80%, 30%)	5.0	[-3.55,3.85]	[-1.29, 1.06]		
(90%, 40%)	2.0	[-4.55,4.15]	[-2.24, 1.69]		
(90%, 40%)	5.0	[-2.65,3.75]	[-1.12, 0.98]		
Longitudinal polarisation					
(-80%, 30%)	2.0			[-1.55,1.96]	
(-80%, 30%)	5.0			[-1.01, 1.16]	
(-90%, 40%)	2.0			[-1.73,1.53]	
(-90%, 40%)	5.0			[-0.93,1.18]	

^{*} The explicit combined results can be obtained by the background simulation and log-likelihood estimation

Comparison

Determination of the CP-odd coupling

	95% C.L. (2σ)limit							
Experiments	ATLAS	CMS	HL-LHC	CEPC	CLIC	CLIC	ILC	
Processes	$H o 4\ell$	$H o 4\ell$	$H o 4\ell$	HZ	W-fusion	Z-fusion	$HZ, Z \rightarrow \mu^{+}\mu^{-}$	
\sqrt{s} [GeV]	13000	13000	14000	240	3000	1000	250	
Luminosity $[fb^{-1}]$	139	137	3000	5600	5000	8000	5000	
(P_{-} , P_{+})							(90%, 40%)	
\widetilde{c}_{HZZ} (×10 ⁻²)	[-16.4, 24.0]	[-9.0, 7.0]	[-9.1, 9.1]	[-1.6, 1.6]	[-3.3, 3.3]	[-1.1, 1.1]	[-1.1, 1.0]	
$f_{CP}^{HZZ}(\times 10^{-5})$	[-409.82, 873.58]	[-123.78, 74.91]	[-126.54, 126.54]	[-3.92, 3.92]	[-16.66, 16.66]	[-1.85, 1.85]	[-1.85, 1.53]	
ĈΖΖ	[-1.2, 1.75]	[-0.66, 0.51]	[-0.66, 0.66]	[-0.12, 0.12]	[-0.24, 0.24]	[-0.08, 0.08]	[-0.08, 0.07]	

- ▶ The e^+e^- colliders can significantly improve the sensitivity to CP-odd HZZ coupling compared to the LHC or HL-LHC.
- ► The sensitivity with polarised beams is better than the analysis with unpolarised beams, where the center-of-mass energy and luminosity are similar.
- ▶ The Z-fusion process can have similar sensitivity but with much higher center-of-mass energy.

Summary

Conclusions

- ▶ The e^+e^- collider can achieve high precision to CP properties of *HZZ* interaction.
- ► The initial transversely polarised beams introduce additional CP-odd observables, which can be combined and improve the sensitivity to CP-odd structure.
- ► The longitudinally polarised beams enhance the total cross-section and suppress the statistical uncertainty, which can improve the CP-odd structure sensitivity as well.
- ▶ Both transverse and longitudinal polarisation improve compared to unpolarised case, where the transverse polarisation offers more observables

Thank you!

Back up

Matching conditions between different interpretations

$$f_{CP}^{HZZ} = \frac{\Gamma_{H \to ZZ}^{CP - \text{odd}}}{\Gamma_{H \to ZZ}^{CP - \text{even}} + \Gamma_{H \to ZZ}^{CP - \text{odd}}},$$
(21)

$$\frac{\Gamma_{H \to ZZ}^{CP - \text{odd}}}{\Gamma_{H \to ZZ}^{CP - \text{even}}} \sim \frac{\sigma_3}{\sigma_{\text{SM}}} [pp \to H \to 4\ell (13 \text{ TeV})] \sim 0.153.$$
 (22)

$$\widetilde{c}_{HZZ} = \frac{g_1^2 + g_2^2}{4} \widetilde{c}_{ZZ} = \frac{m_Z^2}{v^2} \widetilde{c}_{ZZ}.$$
 (23)

Back up

