

Prospects of measuring quantum entanglement in $\tau\tau$ final states at a future e^+e^- Higgs factory

Philip Bechtle, Cedric Breuning, Klaus Desch, Christian Grefe

LCWS 2024 – University of Tokyo

09.07.2024

"Can Quantum-Mechanical Description of Physical Reality

Be Considered Complete?"

Einstein, Podolsky, Rosen: Phys. Rev 47.777

→ Einstein-Podolsky-Rosen (EPR) Paradox

- Einstein: Quantum mechanics (QM) is incomplete
- Postulation of additional "hidden variables" (local hidden variable theories, LHVT)
- *Bell*: Inequality showing differences between LHVT and QM

- Testing the Bell inequality to test LHVT vs. entangled states in QM
- Many Bell tests over the last decades: rule out LHVT
 - Photons, low energies
 - \rightarrow Measure entanglement at collider energies
- Can use Clauser-Horne-Shimony-Holt (CHSH) inequality instead of Bell inequality

CHSH INEQUALITY

- CHSH Operator:

 $\mathfrak{B}_{CHSH} = \vec{A} \cdot \vec{\sigma} \otimes (\vec{B} + \vec{B}') \cdot \vec{\sigma} + \vec{A}' \cdot \vec{\sigma} \otimes (\vec{B} - \vec{B}') \cdot \vec{\sigma}$ with unit vectors $\vec{A}, \vec{A}', \vec{B}, \vec{B}' \in \mathbb{R}^3$

- Assuming local realism: $|\langle \mathfrak{B}_{CHSH} \rangle| \leq 2$ CHSH inequality
- QM: construct system/state that violates this inequality: $|\langle \mathfrak{B}_{CHSH} \rangle| \leq 2\sqrt{2}$

CHSH inequality violated \rightarrow QM, entangled state

CHSH INEQUALITY IN 2 SPIN ½ PARTICLES SYSTEM

- Spin density matrix (*I*: Identity operator):

$$\rho = \frac{1}{4} \left[I \otimes I + \sum_{i} B_{i}^{+}(\sigma_{i} \otimes I) + \sum_{j} B_{j}^{-}(I \otimes \sigma_{j}) + \sum_{ij} C_{ij}(\sigma_{i} \otimes \sigma_{j}) \right]$$
Polarization A Polarization B Correlations

– CHSH inequality:

 $|\langle \mathfrak{B}_{CHSH} \rangle| = |\mathrm{Tr}(\rho \mathfrak{B}_{CHSH})| \le 2$

- Focus on correlation part in ρ : $C_{ij} = \text{Tr}\left(\rho(\sigma_i \otimes \sigma_j)\right)$
- Calculate $M = C^T C$ with eigenvalues $m_1 \ge m_2 \ge m_3$
- CHSH inequality violated if

$$m_{12} = m_1 + m_2 > 1$$

HOW TO CALCULATE C_{ij}? (arXiv:2211.10513v2)

First: need coordinate system in which spins are measured

- \hat{k} is the flight direction of the τ^- in the $\tau^-\tau^+$ rest frame

 $-\hat{r} = (\hat{p} - \cos\Theta \cdot \hat{k})/\sin\Theta$

 $- \hat{n} = \hat{k} \times \hat{r}$

HOW TO CALCULATE C_{ij} ? (arXiv:2211.10513v2)

- We know $C_{ij} = \operatorname{Tr}\left(\rho(\sigma_i \otimes \sigma_j)\right)$ $\rightarrow C_{ij} = \langle s_i^A s_j^B \rangle$ with $s_z^A |\pm, m_B \rangle = \pm |\pm, m_B \rangle$ and $i, j \in \{r, n, k\}$
- In $\tau \to \pi \nu$ (1p0n) decay (τ rest frame): $P(\vec{u}|\vec{s}) = 1 + \alpha \vec{s} \cdot \vec{u}$

- Can show:
$$\left\langle u_i^{\pi^-} u_j^{\pi^+} \right\rangle = -\frac{1}{9} \left\langle s_i^{\tau^-} s_j^{\tau^+} \right\rangle$$
 with $u_i^{\pi} = \vec{u}^{\pi} \cdot \vec{\iota} = \cos \theta_i^{\pi}$

π

₹

MEASURING C_{ij}

Want to measure
$$C_{ij} = -9 \left\langle u_i^{\pi^-} u_j^{\pi^+} \right\rangle = -9 \left\langle \cos \theta_i^{\pi^-} \cos \theta_j^{\pi^+} \right\rangle$$

- Spin density matrix for $H \rightarrow \tau \tau$ can be calculated
- Leads to

$$C_{ij} = \begin{pmatrix} \cos 2\delta & \sin 2\delta & 0\\ -\sin 2\delta & \cos 2\delta & 0\\ 0 & 0 & -1 \end{pmatrix}$$

with Higgs CP phase $\delta \rightarrow \delta = 0$ in SM

$$C_{ij} = \operatorname{diag}(1, 1, -1) \rightarrow \mathfrak{m}_{12} = 2$$

- Basic process: MadGraph5_aMC@NLO (v.3.5.3) (arXiv:1405.0301v2)
- Showering/Hadronization/Decay: Pythia8 (v. 8.306) (arXiv:1410.3012v1)
- (Fast) Detector simulation: Delphes (v.3.5.0) with IDEA card (arXiv:1307.6346v3)

```
import model sm-full
define x = e- mu- u d s c b
define x~ = e+ mu+ u~ d~ s~ c~ b~
generate e+ e- > h z, h > ta+ ta-, z > x x~
```

- Beam energy 120 GeV
- FCC-ee Pythia8 configuration: <u>p8 ee ZH ecm240</u> (without vertex smearing)

TRUTH LEVEL RESULTS

TRUTH LEVEL RESULTS

Resulting correlation matrix

$$C = \begin{pmatrix} 0.932 & -0.067 & 0.008 \\ 0.01 & 0.926 & -0.009 \\ 0.047 & 0.034 & -0.866 \end{pmatrix}$$

which results in

 $m_{12} = 1.76$

RECONSTRUCTION: p_{τ} (arXiv:2211.10513v2)

- Need $p_{\tau^{\pm}}$ for boosts and \hat{k} (8 unknowns)
- Known: $p_{\pi^{\pm}}$, p_H (from measured Z decay products and known initial state)
- Have a number of conditions that constrain the unknown momenta

$$\begin{array}{l} p_{\tau^{+}} + p_{\tau^{-}} = p_{H} & \rightarrow \text{4 constraints} \\ p_{\tau^{+}}^{2} = p_{\tau^{-}}^{2} = m_{\tau}^{2} & \rightarrow \text{2 constraints} \\ \left(p_{\tau^{\pm}} - p_{\pi^{\pm}} \right)^{2} = m_{\nu}^{2} = 0 & \rightarrow \text{2 constraints} \end{array}$$

- Problem: gives 2 solutions

SELECTING THE CORRECT SOLUTION

SELECTION RESULTS

- WHY e^+e^- COLLIDER?
- In theory also possible at pp collision
 - Harder reconstruction, background handling
 - No "simple" way to reconstruct $\tau\tau$ rest frame
- Another "problem" at the LHC: $p_{T,vis} > 40 (30)$ GeV acceptance cut on (sub)leading τ (ATLAS)
 - Hopefully easier to counteract at e^+e^- collisions than at pp collisions

TRUTH LEVEL RESULTS WITH $p_{T,vis} > 30 \text{ GeV}$

TRUTH LEVEL RESULTS WITH $p_{T,vis} > 30 \text{ GeV}$

Resulting correlation matrix

$$C = \begin{pmatrix} 1.206 & 0.028 & -0.017 \\ -0.086 & 1.299 & 0.022 \\ -0.13 & -0.051 & 1.540 \end{pmatrix}$$

which results in

(values > 1 in correlation matrix: probably caused by too low statistics)

$$m_{12} = 4.1$$

EFFICIENCY OF THE $p_{T,vis}$ CUT

For C_{kk} look at the fraction that survives the $p_{T,vis}$ cut:

- Violation of CHSH inequality \rightarrow entangled states, rule out LHVT
- Show violation by measuring the correlation matrix $C_{ij} \rightarrow m_{12} > 1$
- Observable at colliders: π momenta in $\tau \rightarrow \pi \nu$
 - Enough to reconstruct $p_{ au}$
 - Need to select correct solution
- Truth level results match expectations
- Problem: acceptance cuts

- Improve reconstruction
- Simulate and include background processes (arXiv:2211.10513v2) (Main background: $e^+e^- \rightarrow Z\tau\tau$ with $\tau\tau$ from γ^*/Z^* exchange)
 - Suppress by adding constraint $\sqrt{(p_{in} p_Z)^2} \approx m_H$
- Analyse $Z \rightarrow \tau \tau$

BACKUP

RECONSTRUCTING p_{τ} (arXiv:2211.10513v2)

- Basisvectors $p_{H}^{\mu}, p_{\pi^{+}}^{\mu}, p_{\pi^{-}}^{\mu}, q^{\mu} = m_{H}^{-2} \varepsilon^{\mu\nu\rho\sigma} p_{H}^{\nu} p_{\pi^{+}}^{\rho} p_{\pi^{-}}^{\sigma}$
- Can write $p_{\tau^{\pm}}^{\mu} = \frac{1 \mp a}{2} p_{H}^{\mu} \pm \frac{b}{2} p_{\pi^{+}}^{\mu} \mp \frac{c}{2} p_{\pi^{-}}^{\mu} \pm dq^{2}$ which fulfils $p_{\tau^{+}} + p_{\tau^{-}} = p_{H}$
- 2 equations (I, II) from $\left(p_{\tau^{\pm}} p_{\pi^{\pm}}\right)^2 = m_{\nu}^2 = 0$ only dependent on a, b, c
- 2 equations (III, IV) from $p_{ au^\pm}^2=m_ au^2$
 - Difference between III and IV delivers equation (V) only dependent on *a*, *b*, *c*
- Solve equation system I, II, V (only dependent on a, b, c), e.g. as matrix equation
- Sum of III and IV delivers equation for d^2
 - Discard negative solutions of d^2 , try to select correct solution for positive d^2

TRIGGERS AND HIGH $p_{T,vis}$ CUT

section in $H \rightarrow \tau^+ \tau^-$ decay channel

