Searching for New Physics in WW and singleW Events

LCWS 2024 Tokyo University July 10, 2024

Ulrich Einhaus¹, Andre Filipe Silva^{1,2}, Leonhard Reichenbach^{3,4}, Jenny List¹

¹ Deutsches Elektronen-Synchrotron DESY
 ² University of Coimbra
 ³ Bonn University
 ⁴CERN

QUANTUM UNIVERSE

Introduction

Overview on WW /singleW in e+e-

- single and pairwise production
- total number of W bosons produced in ILC250 + ILC500 running \approx 1.2E8
- FCCee very similar (1E8)
- This talk:
 - Triple Gauge Couplings
 - Flavour Physics with W's: CKM matrix elements
 - ongoing work, contributing to ECFA focus topics

single-W production

Introduction

Overview on WW /singleW in e+e-

- single and pairwise production
- total number of W bosons produced in ILC250 + ILC500 running \approx 1.2E8
- FCCee very similar (1E8)
- This talk:
 - Triple Gauge Couplings
 - Flavour Physics with W's: CKM matrix elements
 - ongoing work, contributing to ECFA focus topics

single-W production

Introduction

Overview on WW /singleW in e+e-

- single and pairwise production
- total number of W bosons produced in ILC250 + ILC500 running \approx 1.2E8
- FCCee very similar (1E8)
- This talk:
 - Triple Gauge Couplings (
 - Flavour Physics with W's: CKM matrix elements
 - ongoing work, contributing to ECFA focus topics

single-W production

Triple Gauge Couplings

Triple Gauge Couplings Definitions and LEP / LHC status

most general WWV (V=Z/ γ) Lagrangian: 14 complex couplings (=28 real parameters):

$$\frac{i}{g_{WWV}} \mathcal{L}_{eff}^{WWV} = g_{1}^{V} V^{\mu} \left(W_{\mu\nu}^{-} W^{+\nu} - W_{\mu\nu}^{+} W^{-\nu} \right) + \kappa_{V} W_{\mu}^{+} W_{\nu}^{-} V^{\mu\nu}
+ \frac{\lambda_{V}}{m_{W}^{2}} V^{\mu\nu} W_{\nu}^{+\rho} W_{\rho\mu}^{-} + i g_{5}^{V} \varepsilon_{\mu\nu\rho\sigma} \left[(\partial^{\rho} W^{-\mu}) W^{+\nu} - W^{-\mu} (\partial^{\rho} W^{+\nu}) \right] V^{\sigma}
+ i g_{4}^{V} W_{\mu}^{-} W_{\nu}^{+} (\partial^{\mu} V^{\nu} + \partial^{\nu} V^{\mu}) - \frac{\tilde{\kappa}_{V}}{2} W_{\mu}^{-} W_{\nu}^{+} \varepsilon^{\mu\nu\rho\sigma} V_{\rho\sigma}
- \frac{\tilde{\lambda}_{V}}{2m_{W}^{2}} W_{\rho\mu}^{-} W^{+\mu}{}_{\nu} \varepsilon^{\nu\rho\alpha\beta} V_{\alpha\beta}$$
"LEP

ee->WW: relevant 5 angles

DESY. WW and singleW | J. List | LCWS2024 | July 10 2024

SM: g1Z = g1γ = κZ = κγ = 1 all others = 0

often (incl. SMEFT) restricted to "LEP parametrisation" due to lack of data: C, P invariance, EM gauge & SU(2)xU(1) invariance => g1Z, κγ, λγ

analysis technique plays an important role watch out whether

- binned or unbinned analysis
- 5 or 3 angles used
- single- or multi-parameter fits
- treatment of systematics

Theory-Level Studies

using optimal observables

- Markus Diehl et al 2003 (!)
 - all 28 real parameters (no detector, no background...)
 - can disentangle all at 500 GeV with polarised beams
- For Snowmass SMEFT fits (Jorge de Blas et al):
 - three "LEP" couplings (no detector, no systematics)
 - ~100x gain beyond HL-LHC!
- Jiayin Gu et al: OOs with ML
 - ILD Delphes card
 - optionally 10% ZZ background => application of theory-level OO to real analysis can lead to huge **bias** — but when MLing OO on reco data with background, this can be corrected (to be studied further)

JHEP 05 (2024) 292

Detector-level Simulations

ILD & SiD for ILC TDR (Marchesini, Rosca, Barklow ~2011 ff)

- 500 GeV and 1 TeV
- joint extraction of 3 TGCs (LEP parametrisation) and beam **polarisations** => model impact of all parameters on detector-level
- restricted to WW -> munuqq and WW->enuqq
- 3 TGCs and their covariance matrix passed on to global interpretations, e.g. SMEFT fits

 $P(e^+, e^-) = (+1, -1)$

 $\cos \theta_{decay}$ vs $\cos \theta_W$

0.8 0.6 0.4 0.2 -0.2 -0.4 -0.6 -0.8 -0.6 -0.4 O 0.2 0.4 0.6 0.8 0.6 0.8

Detector-level Simulations

ILD & SiD for ILC TDR (Marchesini, Rosca, Barklow ~2011 ff)

- 500 GeV and 1 TeV
- joint extraction of 3 TGCs (LEP parametrisation) and beam **polarisations** => model impact of all parameters on detector-level
- restricted to WW -> munuqq and WW->enuqq
- 3 TGCs and their covariance matrix passed on to global interpretations, e.g. SMEFT fits

This is not consistent as interplay with other operators and other processes is neglected!

$$P(e', e') = (+1, -1)$$

$$0.8 \\ 0.6 \\ 0.4 \\ e$$

 $\cos \theta_{decay}$ vs $\cos \theta_W$

0.8 0.6 0.4 0.2 -0.2 -0.4 -0.6 -0.8 -0.6 -0.4 0.2 0.4 0.6 0.8 0.6 0.8

- Extrapolation of 500 GeV / 1 TeV detector-level studies to 250 GeV • And first look into "single-W" contribution to evoq final-state (detector effects parametrized, but systematics included) => single-W important contribution to TGC precicision => must be fully included in the future!

DESY. WW and singleW | J. List | LCWS2024 | July 10 2024

- Extrapolation of 500 GeV / 1 TeV detector-level studies to 250 GeV And first look into "single-W" contribution to evqq final-state (detector effects parametrized, but systematics included) => single-W important contribution to TGC precicision => must be fully included in the future!

- Extrapolation of 500 GeV / 1 TeV detector-level studies to 250 GeV And first look into "single-W" contribution to evqq final-state (detector effects parametrized, but systematics included) => single-W important contribution to TGC precicision => must be fully included in the future!

- Extrapolation of 500 GeV / 1 TeV detector-level studies to 250 GeV
- And first look into "single-W" contribution to evqq final-state (detector effects parametrized, but systematics included) => single-W important contribution to TGC precicision => must be fully included in the future!

WW and singleW | J. List | LCWS2024 | July 10 2024 DESY.

	1	1	
TGC	$E_{\rm CMS}[{\rm GeV}]$	$e^+e^- \to \mu\nu q\bar{q}$	$e^+e^- \rightarrow e\nu q\bar{q}$
$\Delta a [10-4]$	250	45.8	15.8
$\Delta g [10]$	500	8.46	4.14
$\Delta = [10-4]$	250	54.9	19
$\Delta \kappa \left[10 \right]$	500	8.85	4.63
Λ) $[10-4]$	250	68.6	22.5
$\Delta \lambda [10^{-1}]$	500	15.6	6.14

- Extrapolation of 500 GeV / 1 TeV detector-level studies to 250 GeV
- And first look into "single-W" contribution to evqq final-state (detector effects parametrized, but systematics included) => single-W important contribution to TGC precicision => must be fully included in the future!

WW and singleW | J. List | LCWS2024 | July 10 2024

	1		
TGC	$E_{\rm CMS}[{\rm GeV}]$	$e^+e^- \to \mu\nu q\bar{q}$	$e^+e^- \to e\nu q\bar{q}$
$\Delta a [10^{-4}]$	250	45.8	15.8
$\Delta g [10]$	500	8.46	4.14
$\Delta \kappa [10-4]$	250	54.9	19
$\Delta \kappa \left[10 \right]$	500	8.85	4.63
$\Delta \lambda [10-4]$	250	68.6	22.5
$\Delta \lambda [10]$	500	15.6	6.14

+single-W

Even more recently

4f and 2f final state combination with detector effects eq acceptance

- detector acceptance in forward region was a leading systematic in ee-> $\mu\mu$ at LEP
- future colliders aims for much higher precision => can we eliminate this source of uncertainty by extracting the acceptance directly together with physics parameters?
- detailed study of ability to reduce impact systematics by combined fits to differential cross sections of 2f and 4f processes including many nuisance parameters at 250 GeV using LEP parametrisation

CKM Matrix elements

The Motivation

Complementarity to B decays

- main motivation: \bullet
 - persistent 3σ -level discrepancy in |Vcb| from B decays: $|V_{cb}|$ from inclusive B decays $|V_{cb}|$ from exclusive B, B_s and Λ_b decays
 - decays!
 - LHC prospects: ~10%
 - estimated to be at the 10⁻⁴ level
- but also all other CKM MEs!
- Naive number of event level of sensitivity (100%, no background):

$W^- ightarrow$	$ar{u}d$	$\bar{u}s$	$ar{u}b$	$ar{c}d$	$\bar{c}s$	$\bar{c}b$
BR	31.8%	1.7%	$4.5 imes 10^{-6}$	1.7%	31.7%	$5.9 imes10^{-4}$
$N_{ m ev}$	$64 imes 10^6$	$3.4 imes 10^6$	900	$3.4 imes10^6$	$63 imes 10^6$	118×10^3
$\delta^{ ext{th}}_{V_{ij}}$	0.0063~%	0.027 %	1.7 %	0.027 %	0.0063 %	0.15 %

 $(42.19 \pm 0.78) \times 10^{-3}$ $(39.10 \pm 0.50) \times 10^{-3}$

difficult to solve in B decays due to inherent hadronic uncertainties — absent in (real) W

• Higgs Factories offer O(10⁸) W bosons in clean e+e- environment, theory uncertainties

The Motivation

Complementarity to B decays

- main motivation: \bullet
 - persistent 3*o*-level discrepancy in Vcb from B decays: $|V_{cb}|$ from inclusive B decays $|V_{cb}|$ from exclusive B, B_s and Λ_b decays
 - decays!
 - LHC prospects: ~10%
 - estimated to be at the 10⁻⁴ level
- but also all other CKM MEs!
- Naive number of event level of sensitivity (100%, no background):

$W^- ightarrow$	$ar{u}d$	$\bar{u}s$	$ar{u}b$	$ar{c}d$	$\bar{c}s$	$ar{c}b$
BR	31.8%	1.7%	$4.5 imes 10^{-6}$	1.7%	31.7%	$5.9 imes10^{-4}$
$N_{ m ev}$	$64 imes 10^6$	$3.4 imes 10^6$	900	$3.4 imes10^6$	$63 imes 10^6$	118×10^3
$\delta^{ ext{th}}_{V_{ij}}$	0.0063~%	0.027 %	1.7 %	0.027 %	0.0063 %	0.15 %

 $(42.19 \pm 0.78) \times 10^{-3}$ $(39.10 \pm 0.50) \times 10^{-3}$

difficult to solve in B decays due to inherent hadronic uncertainties — absent in (real) W

• Higgs Factories offer O(10⁸) W bosons in clean e+e- environment, theory uncertainties

How close can we get in real-life? **Implications for detector design?**

State-of-the-Art

Higgs Factory Projections

- M. Tammaro et al: \bullet
 - parametrised flavour tagging as developed for IDEA@FCCee
 - 2f ("QCD") background only
 - dependence on syst. uncertainty on tagging efficiencies
- brand-new CEPC-240 study

arXiv:2406.01675

- ILD@CEPC in full simulation (MokkaPlus + Marlin)
- 2f, 4f and Higgs backgrounds => considering only 2f is too optimistic.
- dominant systematics: tagging efficiency a background, assume convervative (~LEP) optimistic (4-8 x better than LEP) scenario
- extrapolation to ILC250 conditions

	Uncertainty	Stat.	Syst., Secnario 1	Syst., S
	Unpolarized, Baseline (5 ab^{-1})	0.72%	1.5%	0.2
	Unpolarized, Extended (20 ab^{-1})	0.36%	1.5%	0.2
and	WW Threshold $(5 \times 10^7 WW)$	0.95%	1.5%	0.2
and	Unpolarized, Baseline $+ WW$	0.58%	1.1%	0.1
	Unpolarized, Extended $+ WW$	0.34%	1.1%	0.1
)	Polarized, Baseline (0.5 ab^{-1})	1.5%	1.5%	0.2
	Polarized, Extended (2 ab^{-1})	0.75%	1.5%	0.2

State-of-the-Art

Higgs Factory Projections

- M. Tammaro et al:
 - parametrised flavour tagging as developed for IDEA@FCCee
 - 2f ("QCD") background only
 - dependence on syst. uncertainty on tagging efficiencies
- brand-new CEPC-240 study

- ILD@CEPC in full simulation (MokkaPlus + Marlin)
- 2f, 4f and Higgs backgrounds => considering only 2f is too optimistic.
- dominant systematics: tagging efficiency a background, assume convervative (~LEP) optimistic (4-8 x better than LEP) scenario
- extrapolation to ILC250 conditions

Planned: Confirm with ILD@ILC, include single W, look at hadronic channel, add 500 GeV (~doubles #Ws)

	Uncertainty	Stat.	Syst., Secnario 1	Syst., Se
	Unpolarized, Baseline (5 ab^{-1})	0.72%	1.5%	0.2
	Unpolarized, Extended (20 ab^{-1})	0.36%	1.5%	0.2
and	WW Threshold $(5 \times 10^7 WW)$	0.95%	1.5%	0.2
and	Unpolarized, Baseline $+ WW$	0.58%	1.1%	0.1
	Unpolarized, Extended $+ WW$	0.34%	1.1%	0.1
	Polarized, Baseline (0.5 ab^{-1})	1.5%	1.5%	0.2
	Polarized, Extended (2 ab^{-1})	0.75%	1.5%	0.2
	L			

 $V_{\rm cs}$

 $V_{\rm cb}$

Ongoing Work ILD/CLD

Define uniquely & overlap free in order to allow easy combination afterwards

•	based on <u>MiniDST</u>		510
•	IsolatedLeptonTagging & TauFinder	other	
•	cut-based overlay rejection	leptonic	1.96078e-
•	reshuffle events according to	semileptonic τ	0.016568
•	forward acceptance important	semileptonic μ	5.88235e-
	for evqq due to single-W	semileptonic e	0.0001568
•	analysis	semileptonic invisible	0.004941 ⁻
•	evqq, τvqq would profit from reconstruction improvements	hadronic	0.97825
			hadroni

00	18460	82340	16798	16802	337800	0
UU		02040	10/30	10002	007000	U

-05	0.0327736	0.0403328	0.0369687	0.0325556	0.98196
86	0.0946371	0.0766699	0.017383	0.635758	0.00110124
•05	0.00265439	0.000801555	0.922907	0.039281	0.00716696
863	0.0489707	0.762473	5.95309e-05	0.0468397	0.00417703
18	0.776436	0.112436	0.0200619	0.215153	0.00559503
5	0.0445287	0.00728686	0.00261936	0.030413	
iC	true $ev qq$ cos $\theta > 0.994$	true ev qq cos $\theta < 0.994$	true µv qq	true $\tau v qq$	leptonic True Ever

Define uniquely & overlap free in order to allow easy combination afterwards

•	based on <u>MiniDST</u>		510
•	IsolatedLeptonTagging & TauFinder	other	
•	cut-based overlay rejection	leptonic	1.96078e-
•	reshuffle events according to	semileptonic τ	0.016568
•	forward acceptance important	semileptonic μ	5.88235e-
	for evqq due to single-W	semileptonic e	0.0001568
•	analysis	semileptonic invisible	0.004941 [.]
•	evqq, τvqq would profit from reconstruction improvements	hadronic	0.97825
			hadroni

00	18460	82340	16798	16802	337800	0
00			10700	ICCCE	001000	U

-05	0.0327736	0.0403328	0.0369687	0.0325556	0.98196
86	0.0946371	0.0766699	0.017383	0.635758	0.00110124
05	0.00265439	0.000801555	0.922907	0.039281	0.00716696
863	0.0489707	0.762473	5.95309e-05	0.0468397 au missec	0.00417703
18	0.776436	0.112436	0.0200619	0.215153	0.00559503
5	0.0445287	0.00728686	0.00261936	0.030413	
iC	true $ev qq$ cos $\theta > 0.994$	true ev qq cos θ < 0.994	true µv qq	true τν qq	leptonic True Ever

Define uniquely & overlap free in order to allow easy combination afterwards

•	based on <u>MiniDST</u>		510
•	IsolatedLeptonTagging & TauFinder	other	
•	cut-based overlay rejection	leptonic	1.96078e-
•	reshuffle events according to NPFO. Ptmiss. Mmiss	semileptonic τ	0.016568
•	forward acceptance important	semileptonic μ	5.88235e-
• 00	for evqq due to single-W	semileptonic e	0.0001568
	analysis	semileptonic invisible	0.004941 ⁻
•	evqq, τνqq would profit from reconstruction improvements	hadronic	0.97825
			hadroni

00	18460	82340	16798	16802	337800	0
	10400	02040	107.50	10002	007000	U

05	0.0327736	0.0403328	0.0369687	0.0325556	0.98196			
6	0.0946371	0.0766699	0.017383	0.635758	0.00110124			
05	0.00265439	0.000801555	0.922907	0.039281	0.00716696			
863	0.0489707	0.762473	5.95309e-05	0.0468397 au missec	0.00417703			
18	0.776436	0.112436	0.0200619	0.215153	0.00559503			
	fwd e missed							
5	0.0445287	0.00728686	0.00261936	0.030413				
С	true $ev qq$ cos $\theta > 0.994$	true eν qq cos θ < 0.994	true µv qq	true τν qq	leptonic True Ever			

Define uniquely & overlap free in order to allow easy combination afterwards

•	based on <u>MiniDST</u>		510
•	IsolatedLeptonTagging & TauFinder	other	
•	cut-based overlay rejection	leptonic	1.96078e-
•	reshuffle events according to	semileptonic τ	0.016568
•	forward acceptance important for evqq due to single-W	semileptonic μ	5.88235e-
		semileptonic e	0.0001568
•	qqqq, µv qq => ready for analysis	semileptonic invisible	 0.004941 ⁻
•	evqq, τνqq would profit from reconstruction improvements	hadronic	0.97825
			hadroni

00	18460	82340	16798	16802	337800	0
			107.50	IUUUL	007000	U

WW: production angle

Particle ID for FlavourTag

towards CKM matrix elements

recent addition to MarlinReco: <u>Comprehensive PID (CPID)</u> new: trainings for single particles, ee->qq and ee-> qqqq use as imput for ML flavourtag

	Ц С р					0.70		
	КК				0.67			
odels: g	π			0.81				
	μ		0.66					
end	e	0.91		π	K	р		
ots		е	μ	MC Truth PDG				

p=1-100 GeV

-

p=0.1-100 GeV

use as imput for ML flavourtag

p=1-100 GeV

p=0.1-100 GeV

use as imput for ML flavourtag

p=1-100 GeV

p=0.1-100 GeV

use as imput for ML flavourtag

p=1-100 GeV

FlavourTag beyond LCFIPlus towards CKM matrix elements

- Flavour Tagging being revolutionized by ML
 - Example here: FlavorTaggingML ParticleNet adapted to ILD (M. Meyer / F. Gaede)
 - many others (M. Selvaggi, T. Suehara, M. Ruan...) even better, e.g. Transformer based
- Application in physics analysis requires more than a nice ROC curve => need inference from Markins/ Gaudi!
- for FlavorTaggingML training[®] and inference now available from Marlin, via MarlinMLFlavorTagging
- brand-new: integration of inference into ILD-MiniDST
- upcoming: new training including full CPID and s-tagging

Conclusions

and Outlook

- W's are an integral part of the physics program of future e+e- colliders
- most W physics is above threshold \bullet
- several new results / analyses contributing to ECFA Higgs Factory study
- TGCs \bullet
 - great place to look for new physics
 - beam polarisation and high energy boost sensitivity \bullet
 - how to best interface full experimental studies with global interpretations? •
 - extension to more general WWV vertex (incl. CPV etc)? •
- CKM MEs \bullet
 - complementary to B-decays, independent theory uncertainties \bullet
 - competitive measurents possible for Vcb and others \bullet
 - great impact from new ML-based flavour taggers \bullet
 - likely limited by experimental systematics (tagging efficiencies, background,...)

ongoing ILD/CLD: \bullet

- inclusion of single-W processes => improvement of forward electron reconstruction \bullet
- coherent approach to include all WW / single-W channels
- application of new PID and flavour tagging tools \bullet

