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This Talk…
Part I:


alternative ideas for Measurements of Higgs Boson Branching ratios 
based on event shapes [Knobbe, Krauss, DR, Schumann ‘23]


make use of clean environment in FCC-ee setting


Part II:


precision calculations for event shapes in Higgs decays with EERAD 
[Coloretti, Gehrmann-de Ridder, Preuss ’22] [Gehrmann-de Ridder, Preuss, Williams ‘23] and 
resummation in Sherpa-CAESAR framework [Gehrmann-de Ridder, Preuss, DR, 

Schumann ’24] 

https://inspirehep.net/literature/2666486
https://inspirehep.net/literature/2032599
https://inspirehep.net/literature/2711258


3

Hadronic Higgs Decays
• Higgs with :


• dominant decay into b-
quarks (observed ATLAS/
CMS in Run 2)


• tiny c-quark (first limits)


• substantial into gluons


• suppressed light (s-quark) 
BR

mH = 125 GeV H

b

b̄

H

g

g

Figure 1: Hadronic Higgs decay categories: H ! bb̄ with a Yukawa coupling (left) and

H ! gg via an e↵ective coupling (right).

The rescaling factors given in eqs. (2.5) and (2.6) will be applied in section 3, where we

present event-shape predictions for both decay modes.

To obtain our predictions for the Higgs event-shape distributions, we implement our

NLO QCD calculation in the publicly available1 EERAD3 program [56]. This code has

previously been used to study event shapes [44, 45] and jet distributions [57] in e+e� !

3j at NNLO. The implementation is done in a flexible manner, utilising the existing

infrastructure for three-jet production in electron-positron annihilation and amending it by

new subroutines for Higgs decays. All matrix elements are implemented in analytic form,

enabling a fast and numerically stable evaluation of the perturbative coe�cients. With

this implementation, EERAD3 is promoted to a multi-process event generator, capable of

calculating both o↵-shell Z/� decays at NNLO and Higgs decays at NLO.

In the remainder of this section, we split the discussion of the ingredients of our

computation in the following parts: in section 2.1, we describe the general framework in

which Higgs-decay observables are computed up to NLO, while in sections 2.2 and 2.3 we

present all ingredients needed in the two Higgs decay categories. We conclude in section 2.4

by explicitly summarising all checks that we have performed to confirm the correctness of

our results.

2.1 General framework

For an infrared-safe observable O, the di↵erential decay rate of the Higgs boson to three-

jet-like final states, normalised to the respective Born-level H ! 2j decay width, can be

written up to NLO in the strong coupling ↵s as,
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8 11. Status of Higgs Boson Physics

Table 11.1: State-of-the-art of the theoretical calculations in the main Higgs boson production
channels in the SM, and, when publicly available, the major MC tools used in the simulations.
Furthermore, all the Higgs-boson production modes have been interfaced with parton-shower event
generators at NLO QCD like Poweg-Box, MG5_aMC@NLO or Sherpa (the entries “—” indicate cases
when the results are implemented in codes that are not yet public). For ggF and V H NNLO
matched simulations now also exist. Di�erential NNLO QCD results exist for tt̄H [41] (though the
exact 2-loop virtual corrections are still missing) and have been implemented in MATRIX [42].

ggF VBF V H tt̄H

Inclusive: Inclusive: Inclusive: Inclusive:
N3LO QCD + NLO EW N3LO QCD N3LO QCD NNLO QCD

(iHixs) proVBFH (n3loxs) —
N3LO QCD NNLO QCD

ggHiggs (VH@NNLO)
Di�erential: Di�erential: Di�erential: Di�erential:

NNLO+N3LL QCD NNLO QCD NNLO QCD NLO QCD+EW
(Radish+NNLOJET) — — (MG5_aMC@NLO)
N3LO+N3LLÕ QCD NLO QCD + EW NLO QCD + EW

(TROLL) (HAWK) (HAWK)
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Figure 11.2: (Left) The SM Higgs boson production cross sections as a function of the center
of mass energy,

Ô
s, for pp collisions [43]. The VBF process is indicated here as qqH. (Right)

The branching ratios for the main decays of the SM Higgs boson near mH = 125GeV [39,40]. The
theoretical uncertainties are indicated as bands.

e�ective Lagrangian containing a local HG
a
µ‹G

aµ‹ operator [21, 22]. In this approximation, the
cross section is known at next-to-next-to-next-to-leading order in –s expansion (N3LO QCD) [48].
The validity of the e�ective theory with infinite mt is greatly enhanced by rescaling the result by the
exact LO result: ‡ = (‡LO

mt
/‡

LO
mt=Œ)◊ ‡mt=Œ [40]. The large top-quark mass approximation, after

1st December, 2023
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Figure 11.2: (Left) The SM Higgs boson production cross sections as a function of the center
of mass energy,

Ô
s, for pp collisions [43]. The VBF process is indicated here as qqH. (Right)

The branching ratios for the main decays of the SM Higgs boson near mH = 125GeV [39,40]. The
theoretical uncertainties are indicated as bands.

e�ective Lagrangian containing a local HG
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aµ‹ operator [21, 22]. In this approximation, the
cross section is known at next-to-next-to-next-to-leading order in –s expansion (N3LO QCD) [48].
The validity of the e�ective theory with infinite mt is greatly enhanced by rescaling the result by the
exact LO result: ‡ = (‡LO
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mt=Œ)◊ ‡mt=Œ [40]. The large top-quark mass approximation, after

1st December, 2023



5

Event/Jet Shapes as taggers
• jets containing heavy flavors 

(charm and beauty) are 
central to the LHC Higgs 
program


• important for QCD studies 
too: PDFs, fragmentation etc.


• they are identified exploiting 
B hadron lifetime: displaced 
vertices


• from theory viewpoint, mb & 
mc set perturbative scales: 
high accuracy (NNLO) QCD 
calculations Z+b jet now exist 

Heavy Flavor Jets

4

https://cds.cern.ch/record/2771727/plots

Gauld et a. (2020)

the flavor-kT algorithm originally proposed in [10]. As
compared to standard jet algorithms, the clustering pro-
cedure for this algorithm must have both the flavor and
momentum information of the input particles. First, the
flavor of pseudo(jets) is defined by the net flavor of its
constituents, assigning þ1 (−1) if a flavored quark (anti-
quark) is present. Second, the definition of the distance
measure of this algorithm (which determines the clustering
outcome) depends on the flavor of the pseudojet being
clustered. These steps are necessary to avoid situations
where soft quarks can alter the flavor of a jet, as described
above. In addition, the net flavor criterion also ensures that
jets that contain (quasi)collinear quark pairs are not assigned
anoverall flavor basedon such splittings.Moredetails canbe
found in [10,19].
Comparison with 8 TeV CMS data.—In this section, we

perform a comparison of the Z þ b-jet CMS data at 8 TeV
provided in [8] and validate our implementation of Eq. (1).
Before doing so we summarize the numerical setup and
present details on the unfolding procedure that is applied to
these data to make a consistent comparison with our
theoretical predictions possible.
Numerical inputs: All predictions are provided with the

NNPDF3.1 NNLO PDF set [57] with αsðMZÞ ¼ 0.118 and
nmax
f ¼ 5, where both the PDF and αs values are accessed

via LHAPDF [58]. The results are obtained using the Gμ
scheme with the following values for the input para-
meters: Mos

Z ¼ 91.1876 GeV, Γos
Z ¼ 2.4952 GeV,

Mos
W ¼ 80.385 GeV, Γos

W ¼ 2.085 GeV, and Gμ ¼
1.16638 × 10−5 GeV−2. Including also the universal cor-
rections to the ρ parameter when determining the numerical
values of α and sin2 θW as in [59], leads to αeff ¼ 0.007779
and sin2 θW;eff ¼ 0.2293. An uncertainty due to the impact
of missing higher-order corrections is assessed in the
predictions by varying the values of μF and μR by a factor
of 2 around the central scale μ0 ≡ ET;Z, with the additional
constraint that 1

2 ≤ μF=μR ≤ 2. The scales are treated as
correlated between the coefficients appearing in Eq. (1). We
follow the specific setup of the flavor-kT algorithm adopted
in [48], where a value of α ¼ 2 is used and a beam distance
measure that includes a sum over both QCD partons as well
as the reconstructed gauge boson is introduced.
Unfolding: As already highlighted, the fixed-order pre-

diction for a flavored-jet cross section as defined in Eq. (1)
must be performed with an infrared-safe definition of jet
flavor. However, there are no data available for the process
pp → Z þ b-jet [8,60–65] (or in fact any process) that uses
such a definition of jet flavor. To address this issue, we have
computed a correction to the CMS data [8] as
described below.
These data have been presented for anti-kT b-jets, with a

flavor assignment based on whether the jet contains B
hadron decay products and the additional requirement that
ΔRðB; jetÞ < 0.5. To correct these data to the level of
partonic flavor-kT jets, we apply an unfolding procedure

with the RooUnfold [66] package using the iterative Bayes
method [67]. The input to this procedure is a theoretical
model for the original data using both the anti-kT algorithm
(which is measured) and the flavor-kT algorithm (which we
wish to unfold to).
This model is provided with an NLOþ PS prediction for

Z þ b-jet using aMC@NLO [5] interfaced to PYTHIA8.243

[68]. The parton-level flavor-kT prediction is obtained
using the input QCD partons, which are identical to those
that enter the hadronization process. For the central value,
we use a 5 fs prediction of Z þ jet, where the b-jet
contribution of this sample is extracted. The benefit of
this approach is that the fragmentation component (e.g.,
g → bb̄) is resummed by the PS. To assess the uncertainty
of this procedure, the unfolding is repeated, taking into
account the impact of scale variations in the model.
Additionally, the whole procedure is repeated with a 4 fs
prediction, and the envelope of all of these results is
assigned as an uncertainty. Finally, the unfolding procedure
was also performed with a bin-by-bin unfolding method,
which led to almost identical results for the considered
distributions.
Fiducial cross section: In Fig. 1, the cross section

predictions for the process pp → Z þ b-jet are shown
within the fiducial region defined according to
pT;b > 30 GeV, jηbj < 2.4, pT;l > 20 GeV, jηlj < 2.4,
and Mll̄ ∈ ½71; 111& GeV. The b-jets are reconstructed
with the flavor-kT algorithm with R ¼ 0.5, with the addi-
tional constraint of ΔRðb;lÞ > 0.5. As discussed above,
this matches the fiducial region of the data [8] with the
exception of the choice of the jet clustering algorithm.
The cross section defined according to Eq. (1) is labeled

as FONLL, and predictions are shown at both Oðα2sÞ and
Oðα3sÞ as a function of mb [as it arises explicitly in the
parenthesis on the rhs of Eq. (1)]. The filled band indicates
the uncertainty due to scale variation alone, the small error
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• tagging in experiment (from a theorists perspective): 

• look for displaced vertex, identify with                                      

decaying hadron (  heavy parton)

• improvable with various techniques from machine.                   

learning etc.


• application to H decays  just count b tagged jets

• great performance, but often hard to gain theoretical         

understanding


• theory study with event or jet shapes  not                               
necessarily most performant taggers, but accurate        
understanding possible (i.e. well defined FO, resummation)


• can we apply this to H decays (challenge: without any vertex info)?
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Event Shapes - Fractional Energy Correlations

a step further by never explicitly assigning a flavour to a given event. Such a strategy relies on two well-
established properties of QCD radiation patterns, namely firstly that gluons carry two colours resulting in a
ratio CA/CF = 9/4 of colour charges with respect to quarks and hence about twice as many emissions, and
secondly that the finite masses of the heavy quarks shield the collinear divergence of gluon emission, thereby
depleting their QCD radiation in this region, a phenomenon also known as the ”dead cone” e↵ect [15].
Combining both e↵ects allows the placement of direct constraints to the sum of the light-quark Yukawa
couplings.

In particular we will use fractional energy correlations [16] which are geared towards a systematic study
of the collinear regions of the radiation pattern. Our studies here supplement the existing strategy for the
measurement of the Higgs-boson branching ratio to gluons, see also Ref. [17] for a recent study using jet
charge as a discriminating variable. They furthermore provide an alternative to first attempts to measure
the Yukawa coupling to light quarks through rare decays such as H ! �� at the LHC [18,19].

In relying on event-shape variables alone, hadronisation e↵ects constitute the dominant systematic un-
certainty when fitting Monte Carlo results to (synthetic) data. To account for this we re-tune the new
cluster-hadronisation model [20] of the SHERPA event generator [21] to LEP data, and quantify the resulting
uncertainties through repeated tunes with varying input data. We refer to the resulting sets of alternative
hadronisation parameter values as replica tunes.

Our discussion is structured as follows: In Section 2 we detail the setup of our analysis, and in particular
the event-shape observables we use. This is followed by Section 3 where we describe our simulations with
SHERPA and we put special emphasis on the re-tuning of its fragmentation model. In Section 4 we discuss
the results emerging from fits to various event-shape distributions, with and without soft-drop grooming the
hadronic final state, which we present as allowed two-dimensional regions of values for the deviations µgg

and µqq of the Higgs boson branching ratios into gluons and light quarks. We conclude and summarise our
study in Section 5.

2 Analysis of event shapes in e
+
e
� ! ZH

We here propose an analysis at a future lepton collider operating at the working point for Higgs-strahlung
production, i.e.

p
s & mH +mZ . Our goal is to consider hadronic Higgs-boson decays, where we separate the

branchings to gluons, light (up, down and strange) quarks, charm quarks and bottom quarks. Experimentally,
those will at first all be seen as hadronic channels. However, due to the di↵erence in the QCD radiation
pattern between quarks and gluons, and the imprints of finite quark masses, one can expect di↵erences in
observables such as the well-studied event shapes.

Following the selection cuts of Ref. [6], we identify Z-boson candidates as pairs of opposite-sign leptons
within ±5 GeV of the nominal Z mass. The reconstructed Z-boson is required to have at least a transverse
momentum of pT,Z > 10 GeV and a longitudinal momentum of at most 50 GeV. To suppress irreducible
backgrounds from ZZ events, we require for the opening angle between the two leptons ✓l+l� < 100�. We
additionally ask for a total hadronic mass of all other particles to be at least mhad > 75 GeV. In order to
select events where the hadronic final state is likely to originate from a decaying Higgs-boson, we constrain
the recoil mass of the lepton pair, defined as

m
2
recoil = s + m

2
Z

� 2
p
s(El+ + El�) , (2.1)

see also [2], to be similar to the Higgs-boson mass. In practice we use 120 GeV < mrecoil < 130 GeV.

We base the calculation of event-shape observables on charged-particle tracks1 and consider the family of
fractional energy correlations [16]

FCx ⌘
X

i 6=j

EiEj | sin ✓ij |x(1 � | cos ✓ij |)1�x

(
P

i
Ei)2

⇥ [(~qi · ~nT )(~qj · ~nT )] , (2.2)

with x = 0.5, 1, 1.5. The sums run over all charged tracks i and j with respective energies Ei,j and three-
momenta ~qi,j . All energies and angles are evaluated in the Higgs-boson rest frame, which we reconstruct
as the full charged final state, excluding the two leptons from the Z-boson decay. We can analyse the

1Note, the restriction to charged tracks is not strictly needed for our particle-level analysis, but we expect that the experi-
mental resolution of angular separations improves when using charged-particle tracking information.

2

• class of observables, typically normalised such that


•  pencil-like event (little radiation), 


• spherical event                                       
(a lot of radiation)


• parameter  determines weight of collinear emissions


• analogous to angularities at the LHC ( )

FCx → 0 ⇒

FCx → FCmax
x < 1 ⇒

x

α ∼ 2 − x

¥(l)

ln k(l)
t /Q

Æ = 1/2

Æ = 1

Æ = 2

soft

collinear
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Event Shapes and αs
• one traditional way to extract 

strong coupling constant:


• high accuracy (NNLO+NNLL) of 
event shapes (Thrust, C-
Parameter etc.) fitted to LEP data 
at the Z-pole


• simple 1 or 2 parameter fit, can 
be pushed by theorists long after 
experiments are done
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Event Shapes in Higgs Decays
• naive picture


• b-quarks: radiation suppressed 
due to masses (dead-cone)


• light quarks: massless radiators, 
collinear enhancement 




• gluons: massless radiators, 
collinear enhancement

∝ CF = 4/3

∝ CA > CF

H

b

b̄

H

g

g

Figure 1: Hadronic Higgs decay categories: H ! bb̄ with a Yukawa coupling (left) and

H ! gg via an e↵ective coupling (right).

The rescaling factors given in eqs. (2.5) and (2.6) will be applied in section 3, where we

present event-shape predictions for both decay modes.

To obtain our predictions for the Higgs event-shape distributions, we implement our

NLO QCD calculation in the publicly available1 EERAD3 program [56]. This code has

previously been used to study event shapes [44, 45] and jet distributions [57] in e+e� !

3j at NNLO. The implementation is done in a flexible manner, utilising the existing

infrastructure for three-jet production in electron-positron annihilation and amending it by

new subroutines for Higgs decays. All matrix elements are implemented in analytic form,

enabling a fast and numerically stable evaluation of the perturbative coe�cients. With

this implementation, EERAD3 is promoted to a multi-process event generator, capable of

calculating both o↵-shell Z/� decays at NNLO and Higgs decays at NLO.

In the remainder of this section, we split the discussion of the ingredients of our

computation in the following parts: in section 2.1, we describe the general framework in

which Higgs-decay observables are computed up to NLO, while in sections 2.2 and 2.3 we

present all ingredients needed in the two Higgs decay categories. We conclude in section 2.4

by explicitly summarising all checks that we have performed to confirm the correctness of

our results.

2.1 General framework

For an infrared-safe observable O, the di↵erential decay rate of the Higgs boson to three-

jet-like final states, normalised to the respective Born-level H ! 2j decay width, can be

written up to NLO in the strong coupling ↵s as,

1

�n(s, µR)

d�(s, µR, O)

dO
=

�0(µR)

�n(s, µR)

✓
↵s(µR)

2⇡

◆
dA(s)

dO
+

�0(µR)

�n(s, µR)

✓
↵s(µR)

2⇡

◆2 dB(s, µR)

dO
.

(2.10)

1http://eerad3.hepforge.org
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previously been used to study event shapes [44, 45] and jet distributions [57] in e+e� !

3j at NNLO. The implementation is done in a flexible manner, utilising the existing

infrastructure for three-jet production in electron-positron annihilation and amending it by

new subroutines for Higgs decays. All matrix elements are implemented in analytic form,

enabling a fast and numerically stable evaluation of the perturbative coe�cients. With

this implementation, EERAD3 is promoted to a multi-process event generator, capable of

calculating both o↵-shell Z/� decays at NNLO and Higgs decays at NLO.

In the remainder of this section, we split the discussion of the ingredients of our

computation in the following parts: in section 2.1, we describe the general framework in

which Higgs-decay observables are computed up to NLO, while in sections 2.2 and 2.3 we

present all ingredients needed in the two Higgs decay categories. We conclude in section 2.4

by explicitly summarising all checks that we have performed to confirm the correctness of

our results.

2.1 General framework

For an infrared-safe observable O, the di↵erential decay rate of the Higgs boson to three-

jet-like final states, normalised to the respective Born-level H ! 2j decay width, can be

written up to NLO in the strong coupling ↵s as,
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The rescaling factors given in eqs. (2.5) and (2.6) will be applied in section 3, where we

present event-shape predictions for both decay modes.

To obtain our predictions for the Higgs event-shape distributions, we implement our

NLO QCD calculation in the publicly available1 EERAD3 program [56]. This code has

previously been used to study event shapes [44, 45] and jet distributions [57] in e+e� !

3j at NNLO. The implementation is done in a flexible manner, utilising the existing

infrastructure for three-jet production in electron-positron annihilation and amending it by

new subroutines for Higgs decays. All matrix elements are implemented in analytic form,

enabling a fast and numerically stable evaluation of the perturbative coe�cients. With

this implementation, EERAD3 is promoted to a multi-process event generator, capable of

calculating both o↵-shell Z/� decays at NNLO and Higgs decays at NLO.

In the remainder of this section, we split the discussion of the ingredients of our

computation in the following parts: in section 2.1, we describe the general framework in

which Higgs-decay observables are computed up to NLO, while in sections 2.2 and 2.3 we

present all ingredients needed in the two Higgs decay categories. We conclude in section 2.4

by explicitly summarising all checks that we have performed to confirm the correctness of

our results.

2.1 General framework

For an infrared-safe observable O, the di↵erential decay rate of the Higgs boson to three-

jet-like final states, normalised to the respective Born-level H ! 2j decay width, can be

written up to NLO in the strong coupling ↵s as,

1

�n(s, µR)

d�(s, µR, O)

dO
=

�0(µR)

�n(s, µR)
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↵s(µR)
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Event Shapes in Higgs Decays
• naive picture, at hadron level


• b-quarks: radiation suppressed 
due to masses (dead-cone), high 
mass decay 

• light quarks: massless radiators, 
collinear enhancement 




• gluons: massless radiators, 
collinear enhancement

∝ CF = 4/3

∝ CA > CF

less/softer particles more/harder particles
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Effect of Yukawa couplings
• overall distribution is sum over hadronic 

decay channels


• can determine relative contribution of 
each channel (here 2 parameters, )


• boundary condition

μgg, μqq̄
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Figure 1: Predictions for fractional energy correlations FC1.5 (left) and FC0.5 (right) at the FCC-ee for the
SM and two hypotheses for modified couplings of the Higgs-boson to QCD partons. The bands
indicate the combined statistical and systematic errors of the SM prediction.

3.2 LEP1 setup and Tuning

For the present study we perform dedicated tunes of SHERPA’s new cluster-fragmentation model AHADIC++ [20],
focusing on event-shape observables. We provide non-perturbative (tuning) uncertainties through replica
tunes.

Similar to previous tunes, we concentrate on observables for hadronic final states in electron–positron an-
nihilation accurately measured at LEP1. Our simulations rely on next-to-leading order (NLO) QCD matrix
elements for e

+
e
� ! qq̄ + {0, 1}j dressed by the parton shower, using the SHERPA implementation of the

MEPS@NLO formalism [47]. The contributing tree-level amplitudes are obtained from the built-in matrix
element generators COMIX [48] and AMEGIC++ [49], while the required one-loop amplitudes are obtained
from OPENLOOPS [50]. For the hard-scattering amplitudes we consider q = u, d, s, c massless and only take
into account mass-e↵ects for q = b, therefore adding explicitly the tree-level contribution for the 4b final
state. As jet-separation parameter in the merging prescription we use log10

�
Q

2
cut/s

�
= �2 [51].

We employ the APPRENTICE tuning tool [52] in combination with analyses provided by RIVET [39]. We
simultaneously tune all parameters listed in Table 2 in Appendix B, starting from rather wide parameter
ranges, decreasing the intervals in a sequence of tunes. APPRENTICE uses actual generator runs with varied
hadronisation parameters to construct a bin-wise polynomial surrogate of the Monte-Carlo response for
observables of interest. To narrow down the tuning ranges in subsequent iterations, we construct multiple
such surrogates each with a di↵erent set of generator runs and in this way find equivalent tunes, with results
of similar quality. The outcome of such set of tunes is then used to shrink the parameter ranges for the
next iteration. After the final iteration, the obtained family of equivalent tunes is used to estimate the
remaining non-perturbative uncertainties by interpreting its members as replica tunes, i.e. by re-running the
Monte-Carlo simulation with the alternative parameter values.

Our observable selection for the new generator tunes is similar to the ones used for the initial AHADIC++

tunes presented in [20], as well as its predecessor [53]. It consists mostly of mean and di↵erential charged-
particle multiplicities [54], event shapes like thrust and its minor and major variants [55, 56], as well as the
b-quark fragmentation function [57, 58]. Furthermore, we consider jet-rates for the Durham algorithm [59],
and a selection of multiplicities of identified hadrons [60], thereby aiming for a general tune suitable for
event-shape and jet observables. The complete list of analyses and di↵erential distributions can be found in
Table 1 of Appendix B.

Figure 2 shows exemplary results for observables used in the tuning, including the final SHERPA prediction
and the corresponding non-perturbative tune uncertainty indicated by the light-blue band. To allow for
su�cient freedom in the variations for all 16 parameters considered in the tuning, we provide 50 replica

5

behaviour of this class of observables in response to a single soft-gluon emission o↵ a hard parton from the
hadronic decay as commonly done in the context of resummation calculations [16]. In terms of the soft-gluon
transverse momentum kt and rapidity ⌘ relative to the hard parton, the fractional energy observables scale
like

FCx ⇠ kt

Q
e
b⌘

, with b = 1 � x . (2.3)

Hence x = 1 corresponds to a purely transverse-momentum like scaling; larger (smaller) values of x will give
a higher weight for pairs of particles with smaller (larger) opening angles. The fractional energy correlations
are very similar to jet angularities that are studied at the LHC in the context of quark and gluon tagging, see
for example [22–26]. The choice x = 1.5 corresponds to the Les-Houches angularity [27]. By the Heaviside
function in Eq. (2.2), the fractional energy correlations are implemented as sum over the contributions from
two hemispheres defined by the axis ~nT . We follow the original definition and use the thrust variable to
define the reference axis, and hence the hemispheres. There are further standard observables that are written
in this way, for example total hemisphere broadening,

Btot = B+ + B� , B± =

P
i
|~qi ⇥ ~nT |⇥ [±~qi · ~nT ]P

i
|~qi|

, (2.4)

or total mass

m
2
tot = m

2
+ + m

2
� , m

2
± =

(
P

i
~qi⇥ [±~qi · ~nT ])2P

i
|~qi|

. (2.5)

We also considered properties of individual hemispheres, for example the mass of the heavier hemisphere
and the broadening of the wider one, but did not observe any noteworthy increase in performance and hence
focus on the ones described above. In terms of Eq. (2.3), the broadening scales with b = 0 and behaves
similar to FC1 while the mass would correspond to FC0, i.e. b = 1, which we do not analyse here.

As an additional handle, we employ soft-drop grooming [28] with the goal to reduce hadronisation corrections.
While the soft-drop grooming algorithm was originally developed to mitigate the contamination of jets from
e↵ects that are typically simulated as underlying event or multiple parton interactions, it has been shown to
be e↵ective in mitigating non-perturbative corrections to event-shape observables in leptonic and hadronic
collisions as well [29–31]. We apply the algorithm individually to the two event hemispheres. To this end,
we recluster their respective constituents using the Cambridge/Aachen jet algorithm [32, 33], then undoing
the last clustering step between the subjets i, j and checking for the soft-drop condition

min [Ei, Ej ]

Ei + Ej

> zcut . (2.6)

If this condition is satisfied, the procedure terminates. Otherwise, the softer of the subjets, with smaller
energy, is discarded and the procedure is repeated for the harder one. This continues until Eq. (2.6) is true,
or the remaining subjet consists of only one track. Note that other references include an angular dependence
in the soft-drop condition, whereas we here only consider the � = 0 case of [28], which is equivalent to
the modified mass drop tagger [34, 35]. We also restrict our study to the conventional case zcut = 0.1.
The observables are then calculated on the remaining particles after grooming, however, normalised by the
hadronic energy before grooming. This treatment is necessary in order to define collinear safe observables [30].

For our final results, histograms for the di↵erential distribution of event shapes v are constructed as sums
over the individual decay channels

d�

dv
=

X

i2{qq̄,cc̄,bb̄,gg,WW,ZZ}

µi

d�i

dv
+

d�ZZ

dv
, (2.7)

where the sum runs over the hadronic decay modes of the Higgs-boson, into light (qq̄), charm (cc̄) and
bottom (bb̄) quarks, gluons (gg), as well as two hadronically decaying vector bosons. In the last term we add
the irreducible background from ZZ production. The factors µi parametrise deviations from the Standard
Model (SM) partial Higgs-boson decay widths, with the SM corresponding to µi = 1 8 i. Ultimately, we aim
for an experimental determination of the coe�cients µi. In the following, we explore the possibility to set

3

limits on simultaneous deviations of µgg, µqq̄ and µ
bb̄

from 1, while leaving the total cross section unchanged.
To achieve this, we scan di↵erent points in µgg and µqq̄, fixing µcc̄ = µWW = µZZ = 1, and imposing the
constraint

µ
bb̄

= 1 � (µgg � 1)
�gg

�
bb̄

� (µqq̄ � 1)
�qq̄

�
bb̄

. (2.8)

3 Simulation with SHERPA

To simulate particle-level events we use the SHERPA event generator. The main physics aspects of the
framework are documented in [21], while we here work with a pre-release version 3.0� [36]. We use SHERPA’s
default dipole shower based on Catani–Seymour factorisation [37], that supports finite parton masses in the
splitting kernels and branching kinematics. Parton-to-hadron transitions are described by SHERPA’s built-in
cluster-hadronisation model [20] and hadron decays are treated by its internal decay package [21, 38]. We
will comment below on a dedicated hadronisation-parameter tune based on sensitive measurements from LEP

experiments. We analyse our simulated data with the RIVET package [39] and use the CONTUR tool [40, 41]
for statistical analyses and the calculation of exclusion limits.

3.1 FCC-ee setup

We assume the operating conditions for a Future Circular Collider, FCC-ee, running at a centre-of-mass
energy of

p
s = 240 GeV [1, 2]. We simulate the processes e

+
e
� ! Z(! µ

+
µ
�)H(! qq̄) at order ↵

3
EWy

2
q

separately for q = u, d, s, collectively referred to as light-quark decays, q = c and q = b, and e
+
e
� ! Z(!

µ
+
µ
�)H(! gg). We here assume the one-loop decay H ! gg in the heavy top-quark limit, treating it

through an e↵ective ggH vertex [42–44]. We take into account the Higgs-boson decays to WW
⇤ and ZZ

⇤

by generating a sample of e+e� ! Z(! µ
+
µ
�)H events where the Higgs is forced to decay into Wqq̄

0 or
Zqq̄ and the on-shell vector bosons likewise decay into quarks. We rescale our leading-order results to the
branching ratios from [45], corresponding to

BR(H ! bb̄) = 56.81% , BR(H ! cc̄) = 2.82% , BR(H ! gg) = 8.112% , (3.1)

by appropriately adjusting the event weights in the final samples. While we neglect contributions from
q = u, d, we estimate the H ! ss̄ branching ratio by scaling the H ! cc̄ result [46], i.e.

X

q=u,d,s,

BR(H ! qq̄) ⇡ BR(H ! ss̄) ⇡
✓
ms

mc

◆2

BR(H ! cc̄) = (11.72)�2 BR(H ! cc̄) . (3.2)

Note that we handle c and b quarks as massive in the parton-shower evolution [37]. Finally, we simulate a
sample for resonant and non-resonant di-boson production, i.e. e+e� ! µ

+
µ
�
qq̄ at order ↵

4
EW, which we

refer to as ZZ background. We do not include any higher-order corrections at this stage of the simulation.

The computed cross sections are scaled to an integrated luminosity of L = 5 ab�1 to account for the full
projected statistics accumulated by the FCC-ee at this centre-of-mass energy, and we include another factor
of two to emulate the use of both electron and muon channels. We construct histograms for the considered
set of observables according to Eq. (2.7). The statistical errors are scaled accordingly with the estimated
number of entries for a given bin i, Ni, as

p
Ni. This is combined with a covariance matrix for the systematic

variations of hadronisation-model parameters, see below, derived as

Vij = hNiNji � hNiihNji , (3.3)

where the average is taken over runs with di↵erent tuning parameters.

In Fig. 1 we show example predictions for the fractional energy correlations FC1.5 and FC0.5. We illustrate
the SM distribution obtained from our simulations with SHERPA as well as the variations corresponding to
two representative sampling points in the (µgg, µqq̄) plane, i.e. {µgg = 1, µqq̄ = 4} and {µgg = 1.18, µqq̄ = 1}.

4



11

Study Setup
• run  at  with Sherpa  


• assume luminosity of  


• follow cuts from [Azzi, Bernet, Botta, et. al. ‘12]


• fragmentation: tune to LEP data


• replica tunes: well defined variations of                                          
fragmentation parameters,                                                                      
allow systematic study of uncertainties                                             
(see also [Knobbe, DR, Schumann ‘23])
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Figure 2: Example results for the SHERPA hadronisation tune including model parameter uncertainties in
comparison to data from LEP taken at

p
s = 91.2 GeV. Shown are the charged-particle multiplicity

nch measured by ALEPH [54] (left), thrust T as measured by DELPHI [56] (center), and the B-hadron
energy fraction xB measured by OPAL [58] (right). Each of the SHERPA predictions corresponds
to 107 events, ensuring that the statistical errors are negligible and the depicted uncertainties are
dominated by the variations of non-perturbative model parameters.
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Figure 3: Exclusion limits based on fractional energy correlations (from left to right) FC1.5, FC1, FC0.5.

tunes. They represent our tuning uncertainties by having each replica tuned with a di↵erent, random subset
of Monte-Carlo runs. We extract the uncertainty bands in Fig. 2 by re-running the simulation for each of
the replica tunes, and plot the envelope of the resulting deviations. We find good agreement between our
SHERPA predictions and data, with deviations of the central tune to the data being largely covered by our
estimated non-perturbative uncertainties.

4 Results

Let us now turn to the statistical analysis of event shapes, measured as described in Sec. 2. We add the
histograms corresponding to our analysis to the CONTUR framework [40], and use its statistical analysis
modules to compute confidence levels for the exclusion of di↵erent points in the (µgg, µqq̄) plane.

The two dimensional exclusion limits for µgg versus µqq̄ based on the three fractional energy correlations
FC1.5, FC1 and FC0.5 are shown in Fig. 3, respectively. As already indicated in the introduction, QCD
radiation tends to mainly populate the soft and collinear regions of phase space, where the dead-cone e↵ect
associated to the finite and relatively large masses of the c and b quarks most visibly manifest themselves,
and where di↵erences due to di↵erent colour charges (the CF of quarks versus the CA of the gluons) lead to
directly observable di↵erences in the numbers of particles emitted. Accordingly, the Les-Houches angularity
FC1.5 tends to be the most sensitive observable, since it gives the largest weight to collinear emissions.
Nevertheless, all three choices x = 1.5, 1, 0.5 are able to limit µgg to be within 1 ± 0.10 based on a 68%
confidence limit. However, based on FC1.5 one should be able to set a stronger limit on µgg to be within
1 ± 0.07 and additionally limit µqq̄ < 33, while we can only exclude µqq̄ values larger than 45 based on FC1.

6

Sherpa 3.0.0 
now released, 
see talk by         
F. Siegert

https://inspirehep.net/literature/1126228
https://inspirehep.net/literature/2673388
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Results
• generally best limit from  

(higher weight on collinear 
emissions)


• slight improvement from taking into 
account correlated distribution in 
each jet


• limit of the same orders as tagging 
techniques, though not quite 
competitive (but provides 
independent methodology)
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Figure 2: Example results for the SHERPA hadronisation tune including model parameter uncertainties in
comparison to data from LEP taken at

p
s = 91.2 GeV. Shown are the charged-particle multiplicity

nch measured by ALEPH [54] (left), thrust T as measured by DELPHI [56] (center), and the B-hadron
energy fraction xB measured by OPAL [58] (right). Each of the SHERPA predictions corresponds
to 107 events, ensuring that the statistical errors are negligible and the depicted uncertainties are
dominated by the variations of non-perturbative model parameters.
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Figure 3: Exclusion limits based on fractional energy correlations (from left to right) FC1.5, FC1, FC0.5.

tunes. They represent our tuning uncertainties by having each replica tuned with a di↵erent, random subset
of Monte-Carlo runs. We extract the uncertainty bands in Fig. 2 by re-running the simulation for each of
the replica tunes, and plot the envelope of the resulting deviations. We find good agreement between our
SHERPA predictions and data, with deviations of the central tune to the data being largely covered by our
estimated non-perturbative uncertainties.

4 Results

Let us now turn to the statistical analysis of event shapes, measured as described in Sec. 2. We add the
histograms corresponding to our analysis to the CONTUR framework [40], and use its statistical analysis
modules to compute confidence levels for the exclusion of di↵erent points in the (µgg, µqq̄) plane.

The two dimensional exclusion limits for µgg versus µqq̄ based on the three fractional energy correlations
FC1.5, FC1 and FC0.5 are shown in Fig. 3, respectively. As already indicated in the introduction, QCD
radiation tends to mainly populate the soft and collinear regions of phase space, where the dead-cone e↵ect
associated to the finite and relatively large masses of the c and b quarks most visibly manifest themselves,
and where di↵erences due to di↵erent colour charges (the CF of quarks versus the CA of the gluons) lead to
directly observable di↵erences in the numbers of particles emitted. Accordingly, the Les-Houches angularity
FC1.5 tends to be the most sensitive observable, since it gives the largest weight to collinear emissions.
Nevertheless, all three choices x = 1.5, 1, 0.5 are able to limit µgg to be within 1 ± 0.10 based on a 68%
confidence limit. However, based on FC1.5 one should be able to set a stronger limit on µgg to be within
1 ± 0.07 and additionally limit µqq̄ < 33, while we can only exclude µqq̄ values larger than 45 based on FC1.
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Figure 4: Exclusion limits based on soft-drop groomed fractional energy correlations (from left to right)
FC1.5, FC1, FC0.5.
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Figure 5: Exclusion limits based on fractional energy correlations (from left to right) FC1.5, FC1, FC0.5,
measured individually on the two hemispheres.

Finally, FC0.5 appears to not be sensitive to µqq̄ within the range we consider.

Including soft-drop grooming of the hemispheres does not result in any significant improvements, as shown
in Fig. 4, the equivalent of Fig. 3 but with grooming included. In fact, the limits worsen slightly, which
could to some extend have been anticipated, since there are competing e↵ects at work. Grooming will
remove some information from the radiation pattern, but on the other hand has the potential to reduce
the impact of hadronisation corrections and hence the associated systematic uncertainty. Apparently, this
reduction is not su�cient to compensate for the loss in information, at least with the grooming parameters
we have considered here. One could imagine that an optimisation of zcut and the inclusion of angular
dependence in the soft-drop condition could lead to more competitive results. In addition it is certainly
worth stressing that the combination of probable future refinements of the hadronisation models and the
drastically increased data set of a potential FCC-ee (1012 events vs 107 at LEP-I) will most likely significantly
reduce the uncertainty related to the modelling of the parton-to-hadron transition. To illustrate this, we
present in Appendix A Fig. 7 selected exclusion-limit plots for the scenario of negligible non-perturbative
uncertainties. As anticipated, the limits improve, resulting in µgg = 1 ± 0.05 and µqq̄ < 25 for plain FC1.5,
and µgg = 1 ± 0.06 and µqq̄ < 28 for its soft-drop groomed variant.

One of the major di↵erences of our procedures so far, compared to traditional tagging methods, is that we
e↵ectively tag any event as a whole. When individually tagging jets, or hemispheres for that matter, one
would want to include a requirement that both tags are compatible with the desired final state. To mimic
this, we consider a measurement of the fractional energy correlations but on each hemisphere separately.
We then derive exclusion limits based on the corresponding two-dimensional histograms. While we hope
to expose additional information in this way, it should be clear that this is a more involved observable
definition. In particular, joint resummed calculations of several observables are far less advanced than what
would be available for the distributions considered above. The resulting confidence levels can be found in
Fig. 5. They are somewhat improved compared to the baseline in Fig. 3. In particular, for FC1.5 we obtain
µgg = 1± 0.05 and µqq̄ < 21. This suggests that combining individual results from the two hemispheres into

7
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Part II - precision calculations for  
event shapes
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Precision calculations - Fixed Order
• From [Coloretti, Gehrmann-de Ridder, Preuss ’22]: 

two types of Higgs decays, to 
(massless) quarks and gluons via 
effective vertex, implemented in 
EERAD3


• produces coefficients  for IR safe 
event shape :


• needs addition of all orders (resummed) 
calculation

A, B
O

H

b

b̄

H

g

g

Figure 1: Hadronic Higgs decay categories: H ! bb̄ with a Yukawa coupling (left) and

H ! gg via an e↵ective coupling (right).

The rescaling factors given in eqs. (2.5) and (2.6) will be applied in section 3, where we

present event-shape predictions for both decay modes.

To obtain our predictions for the Higgs event-shape distributions, we implement our

NLO QCD calculation in the publicly available1 EERAD3 program [56]. This code has

previously been used to study event shapes [44, 45] and jet distributions [57] in e+e� !

3j at NNLO. The implementation is done in a flexible manner, utilising the existing

infrastructure for three-jet production in electron-positron annihilation and amending it by

new subroutines for Higgs decays. All matrix elements are implemented in analytic form,

enabling a fast and numerically stable evaluation of the perturbative coe�cients. With

this implementation, EERAD3 is promoted to a multi-process event generator, capable of

calculating both o↵-shell Z/� decays at NNLO and Higgs decays at NLO.

In the remainder of this section, we split the discussion of the ingredients of our

computation in the following parts: in section 2.1, we describe the general framework in

which Higgs-decay observables are computed up to NLO, while in sections 2.2 and 2.3 we

present all ingredients needed in the two Higgs decay categories. We conclude in section 2.4

by explicitly summarising all checks that we have performed to confirm the correctness of

our results.

2.1 General framework

For an infrared-safe observable O, the di↵erential decay rate of the Higgs boson to three-

jet-like final states, normalised to the respective Born-level H ! 2j decay width, can be

written up to NLO in the strong coupling ↵s as,

1

�n(s, µR)

d�(s, µR, O)

dO
=

�0(µR)

�n(s, µR)

✓
↵s(µR)

2⇡

◆
dA(s)

dO
+

�0(µR)

�n(s, µR)

✓
↵s(µR)

2⇡

◆2 dB(s, µR)

dO
.

(2.10)

1http://eerad3.hepforge.org
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our results.
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Resummation - CAESAR in Sherpa
• CAESAR formalism for soft gluon resummation at NLL


• available as implementation in Sherpa


• multiplicative matching (  NLL’ accurate)


• necessary extensions for jet observables… :


• modified wide angle behaviour


• non-global logs


• … and for soft drop grooming


• CEASAR style formulas available

⇒

[Banfi, Salam, Zanderighi ’04]


[Gerwick, Höche, Marzani, Schumann ’15] 

[Baberuxki, Preuss, DR, Schumann ’19]


[Dasgupta, Khelifa-Kerfa, Marzani, Spannowski ‘12]

[Caletti, Fedkevych, Marzani, DR, Schumann, Soyez, Theeuwes ’21]


 [DR, Caletti, Fedkevych, Marzani, Schumann, Soyez ‘22]


[Dasgupta, Salam ’01]


[Larkoski, Marzani, Soyez, Thaler ’14]


[Baron, DR, Schumann, Schwanemann, Theeuwes ‘20]

https://inspirehep.net/literature/655163
https://inspirehep.net/literature/1330322
https://inspirehep.net/literature/1771860
https://inspirehep.net/literature/1121578
https://inspirehep.net/literature/1858240
https://inspirehep.net/literature/1993727
https://inspirehep.net/literature/555905
https://inspirehep.net/literature/1281068
https://inspirehep.net/literature/1837131
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Precision Calculations - Resummation with CAESAR
• master formula for rIRC save observable: [Banfi, Salam, Zanderighi ’04]


• ingredients known analytically in our cases


• matching:


• here for the first time, handle external (to Sherpa) fixed order calculation, given 
in terms of  distributions for matching:A, B

the expansion of a leading order approximation. This of course introduces additional e↵ects beyond our
considered logarithmic accuracy. We argue it is safe to ignore those, given the generally small numerical
size of these contributions as seen for example in [28]. We here for the first time apply the CAESAR

implementation in SHERPA to an observable that is sensitive to the PDF ratio (note this only applies to
the ungroomed version of thrust) and at the same time match to the (N)NLO calculation. We hence
need to take care of the expansion to one order higher. Following [27], the numerator of Eq. (23) can to
NLL accuracy be written and expanded in powers of ↵s as

f(x, e
�2L/(a+b)

µ
2

F ) = exp


�T

✓
L

a + b

◆
P⌦
�
f(x, µ

2

F )

⇠ 1 �
✓

T
(1)

✓
L

a + b

◆
+ T

(2)

✓
L

a + b

◆◆
P ⌦ f(x, µ

2

F )

+
1

2

✓
T

(1)

✓
L

a + b

◆◆2

P ⌦ P ⌦ f(x, µ
2

F ) + O
�
↵
3

s

�
, (24)

where T
(i) denotes the ith term obtained by expanding the integrated strong coupling

T (L) = � 1

⇡�0

ln(1 � 2↵s�0L) (25)

in powers of ↵s. The bold-faced symbols represent matrices (of splitting functions, P) and vectors
(f = (fu, fd, fs, . . . )) in flavour space, and the convolution is given by

P ⌦ f(x, µ
2

F ) =

Z
1

x

dz

z
P
⇣

x

z

⌘
f(z, µ

2

F ) . (26)

New terms at O(↵2

s
) hence originate from the higher order expansion of T , mixed terms with other

parts of the resummation multiplying the leading order expansion, and the convolution of two splitting
functions with the PDF in the last line of Eq. (24). The last one is the only one that requires a non-trivial
implementation. We use the expressions from [84] for convoluted splitting functions, and solve the final
integral for the convolution with the PDF through Monte Carlo integration, as done at leading order.

We match our resummed calculation in the multiplicative matching scheme along the lines of [83],
which we briefly recap here. The matching to fixed order is done at the level of cumulative distributions
⌃(v). Note that we have dropped the label for the partonic channel since in our case there is a single
one only. We expand the inclusive cross section �fo as well as the fixed-order and resummed cumulative
distributions, ⌃fo and ⌃res in series of ↵s:

�fo = �
(0) + �

(1)

fo
+ �

(2)

fo
+ . . . , (27)

⌃fo(v) = �
(0) + ⌃(1)

fo
(v) + ⌃(2)

fo
(v) + . . . , (28)

⌃res(v) = �
(0) + ⌃(1)

res
(v) + ⌃(2)

res
(v) + . . . , (29)

where the number in parentheses indicates the respective order in ↵s, and �
(0) denotes the Born-level

cross section. Our final matched expression for the cumulative distribution, with the dependencies on
the observable value suppressed, reads:

⌃matched = ⌃res

 
1 +

⌃(1)

fo
� ⌃(1)

res

�(0)
+

⌃(2)

fo
� ⌃(2)

res

�(0)
� ⌃(1)

res

�(0)

⌃(1)

fo
� ⌃(1)

res

�(0)

!
. (30)

Note that, compared to our earlier works, we use ⌃(2) directly, thus reproducing the inclusive cross section

to one order higher, what requires the calculation of �
(2)

fo
. Importantly, the resummed NLL result ⌃res is

multiplied by

⌃(1)

fo
� ⌃(1)

res

�(0)
! ↵s

2⇡
C1 as v ! 0 , (31)
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4 (N)NLO + NLL0 resummation for 1-jettiness in DIS

The 1-jettiness observable considered here is equivalent to thrust in DIS, which has originally been
resummed at NLL accuracy in [24, 75]. The more general n-jettiness was suggested in [76], and has been
resummed to NNLL accuracy [77]. For 1-jettiness, analytic fixed order results at LO have been presented
in [78], and the NLL calculation has been matched to fixed order at NLO accuracy in [79]. The resummed
calculations in this formalism for event shapes in DIS were extended to N3LL in [80]. Grooming for DIS
has first been suggested in [41] based on jets defined with the CENTAURO jet algorithm [42]. The same
Ref. [41] also provided NNLL results for both 1-jettiness and jet mass after soft drop grooming. Non-
perturbative corrections have there been modelled through a two-parameter shape function [81, 82]. To
our knowledge there are no published results studying these observables including matching to fixed order
or using a fixed order calculation alone.

4.1 NLL resummation in the CAESAR approach

To perform the NLL resummation of logarithms L of event shapes in DIS we use the implementation
of the CAESAR formalism [27] available in the SHERPA framework [28, 83]. For a recursive infrared and
collinear (rIRC) safe observable, the cumulative cross section for observable values up to v = exp(�L)
can be expressed to all orders, in general as a sum over partonic channels �, as follows:

⌃res(v) =
X

�

⌃�
res

(v) , with

⌃�
res

(v) =

Z
dB�

d��

dB�
exp

"
�
X

l2�

R
B�
l (L)

#
PB�(L)SB�(L)FB�(L)H�(B�) ,

(20)

where d��
dB�

is the fully di↵erential Born cross section for channel � and H implements the kinematic cuts
applied to the Born phase space B. For a 2-jet observable like thrust in DIS, there is only one relevant
partonic Born channel, corresponding to an incoming and an outgoing quark. This also implies that the
soft function S, which implements colour evolution, is trivial in our case. Further, since we are dealing with
an additive observable, the multiple emission function F is simply given by F(L) = e

��ER0
/�(1 + R

0),
with R

0(L) = @R/@L and R(L) =
P

l2� Rl(L). The collinear radiators Rl for the hard legs l were
computed in [27] for a general observable V scaling for the emission of a soft-gluon of relative transverse

momentum k
(l)
t and relative rapidity ⌘

(l) with respect to leg l as

V (k) =

 
k
(l)
t

µQ

!a

e
�bl⌘

(l)

dl (µQ) gl (�) . (21)

For the case of 1-jettiness we are focusing on in this publication, we have a = bl = 1, and fixing µ
2

Q = Q
2

also dlgl = 1 since there is no dependence on the azimuthal angle �. The precise form of the logarithm
can be varied according to

L ! ln
h
xL

v
� xL + 1

i
! ln

xL

v
as v ! 0 , (22)

to estimated the impact of sub-leading logarithms, while leaving the distribution at the kinematic endpoint
v ⇠ 1 unchanged. Note this implies an additional contribution to Rl(L) to restore NLL accuracy.

The PDF factor P, in our study applicable only to the hadronic beam, is here given by

P =
fq(x, e

�2L/(a+b)
µ
2

F )

fq(x, µ
2

F )
, (23)

corrects for the true initial-state collinear scale. We thereby account for the full DGLAP evolution by
calculating a simple ratio. For the purpose of matching to a fixed order calculation, we also need the
expansion of the ratio to a given order in ↵s. We generally follow the approach of [27] to implement
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g

Figure 1: Hadronic Higgs decay categories: H ! bb̄ with a Yukawa coupling (left) and

H ! gg via an e↵ective coupling (right).

The rescaling factors given in eqs. (2.5) and (2.6) will be applied in section 3, where we

present event-shape predictions for both decay modes.

To obtain our predictions for the Higgs event-shape distributions, we implement our

NLO QCD calculation in the publicly available1 EERAD3 program [56]. This code has

previously been used to study event shapes [44, 45] and jet distributions [57] in e+e� !

3j at NNLO. The implementation is done in a flexible manner, utilising the existing

infrastructure for three-jet production in electron-positron annihilation and amending it by

new subroutines for Higgs decays. All matrix elements are implemented in analytic form,

enabling a fast and numerically stable evaluation of the perturbative coe�cients. With

this implementation, EERAD3 is promoted to a multi-process event generator, capable of

calculating both o↵-shell Z/� decays at NNLO and Higgs decays at NLO.

In the remainder of this section, we split the discussion of the ingredients of our

computation in the following parts: in section 2.1, we describe the general framework in

which Higgs-decay observables are computed up to NLO, while in sections 2.2 and 2.3 we

present all ingredients needed in the two Higgs decay categories. We conclude in section 2.4

by explicitly summarising all checks that we have performed to confirm the correctness of

our results.

2.1 General framework

For an infrared-safe observable O, the di↵erential decay rate of the Higgs boson to three-

jet-like final states, normalised to the respective Born-level H ! 2j decay width, can be

written up to NLO in the strong coupling ↵s as,

1

�n(s, µR)

d�(s, µR, O)

dO
=

�0(µR)

�n(s, µR)

✓
↵s(µR)

2⇡

◆
dA(s)

dO
+

�0(µR)

�n(s, µR)

✓
↵s(µR)

2⇡

◆2 dB(s, µR)

dO
.

(2.10)

1http://eerad3.hepforge.org
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Results
• example: jet/hemisphere 

broadening


• expected separation between 
quark and gluon final states


• gluons dominate much “harder” 
configurations than quarks


• expected “Sudakov shoulder” for  
observables like C-parameter
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Figure 5: Matched NLO+NLL0 (solid) and LO+NLL0 (dashed) predictions for total broadening. The
lower panel contains the di↵erence between the respective NLO+NLL0 and LO+NLL0 results
(see text).

dominated by the Sudakov shoulder e↵ects [115, 23, 37, 38] around the kinematic endpoints, i.e., the far-
right side of the figure. These e↵ects emphasise that the respective leading-order results are not covered
by the NLO uncertainty band. In this context, it is to be highlighted that all event-shape distributions
shown here are dominated by the NLL0 resummation in the soft region, ln v . �2 and by the fixed-order
calculation in the hard region, ln v & �2. As expected, the heavy-jet mass behaves very similar to thrust;
we note that they agree for three-particle configurations. Likewise, we observe a similar behaviour of the
wide jet broadening BW as for the closely related total jet broadening BT.

We note that the Durham three-jet resolution yD
23

has a similar scaling as the broadenings, however
with a = 2, b = 0. This corresponds to a factor two on the logarithm on the abscissa and we thus extend
the plot range correspondingly. The corrections from matching appear to be generally smaller in this
case than the others, in agreement with [64]. In particular we do not observe any marked features around
the kinematical endpoint.

In the lowest row of Fig. 6, we finally show the results for soft-drop groomed thrust with two di↵erent
values of � = 1 and � = 2, corresponding to a less aggressive grooming, compared to the case � = 0. For
the first case we observe a transition behaviour with a peak at higher values in the H ! bb̄ distribution,
moving the peak position closer to that of the H ! gg case. For � = 2, the grooming is weak enough
to allow for the development of the usual Sudakov peak, and we hence observe a cleaner separation of
the two distributions. The e↵ects from NLO matching compared to LO appear to be smaller again for
these two groomed thrust variants. There are also no easily identifiable features around the transition
point anymore in the di↵erence shown in the lower panels. We only observe slight di↵erences towards
the kinematical endpoint, which then vanish very fast with increasing logarithm L, at least compared to
the other cases we studied.

15

0.0

0.1

0.2

0.3

0.4

0.5

1/
�

d�
/d

ln
C

NLO + NLL0

C-Parameter

H ! bb̄
LO+NLL’
H ! gg
LO+NLL’

�6 �5 �4 �3 �2 �1 0
ln C

�0.2

0.0

0.2

D
iff

.t
o

LO
+

N
LL

0 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1/
�

d�
/d

ln
B W NLO + NLL0

Wide Jet Broadening

H ! bb̄
LO+NLL’
H ! gg
LO+NLL’

�6 �5 �4 �3 �2 �1 0
ln BW

�0.2

0.0

0.2

D
iff

.t
o

LO
+

N
LL

0

0.0

0.1

0.2

0.3

0.4

0.5

1/
�

d�
/d

ln
� H

NLO + NLL0

Heavy-Jet Mass

H ! bb̄
LO+NLL’
H ! gg
LO+NLL’

�7 �6 �5 �4 �3 �2 �1 0
ln �H

�0.05

0.00

0.05

D
iff

.t
o

LO
+

N
LL

0 0.00

0.05

0.10

0.15

0.20

0.25

1/
�

d�
/d

ln
yD 23

NLO + NLL0

Durham Three-Jet Resolution

H ! bb̄
LO+NLL’
H ! gg
LO+NLL’

�12 �10 �8 �6 �4 �2 0

ln yD
23

�0.05

0.00

0.05

D
iff

.t
o

LO
+

N
LL

0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1/
�

d�
/d

ln
� S

D

NLO + NLL0

zcut = 0.1 � = 1

Soft-Drop Thrust

H ! bb̄
LO+NLL’
H ! gg
LO+NLL’

�10 �8 �6 �4 �2 0
ln �SD

�0.05

0.00

0.05

D
iff

.t
o

LO
+

N
LL

0 0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1/
�

d�
/d

ln
� S

D

NLO + NLL0

zcut = 0.1 � = 2

Soft-Drop Thrust

H ! bb̄
LO+NLL’
H ! gg
LO+NLL’

�10 �8 �6 �4 �2 0
ln �SD

�0.05

0.00

0.05

D
iff

.t
o

LO
+

N
LL

0

Figure 6: Matched NLO+NLL0 (solid) and LO+NLL0 (dashed) predictions for C-parameter and heavy-
jet mass (top row), wide broadening and Durham jet resolution (middle row), and soft-drop
groomed thrust with � = 1, 2 (bottom row). The lower panels contain the di↵erence between
the respective NLO + NLL0 and LO + NLL0 results (see text).
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Interestingly, while the distributions related to the Higgs to gluon decay mode approach zero much earlier
than those related to the Higgs to quark decay mode, as seen in the upper panels of the figures, this is
not necessarily the case for the di↵erence between the respective LO- and NLO-matched distributions,
shown in the lower panels.

In Fig. 4 we present results for the mass-like thrust ⌧ with CAESAR parameters a = 1, b = 1 and its
soft-drop groomed variant ⌧SD. As mentioned before, for both observables we present the distributions
containing results for the gluonic H ! gg decays as well as for the decays to b-quarks, in the same plot.
In the groomed case, the di↵erence above the transition point ⌧SD ⇠ zcut = 0.1 appears to be somewhat
larger than in the equivalent region of the ungroomed thrust. There appears a non-smooth feature around
the transition point, i.e., ln ⌧SD ⇡ �2.3, which in particular for the H ! gg case is more visible in the
di↵erence than in the actual distribution. Below this point the di↵erence to the leading-order matched
distribution quickly decays. In the ungroomed cases an oscillating behaviour is seen instead, with the
di↵erence transitioning between positive and negative values, with vanishing absolute value. We can
observe in the two panels of Fig. 4 that the leading-order matched result appears to be within the error
band of the NLO+NLL0 result. The only exceptions are the points where the band boundaries cross each
other, as expected for normalised distributions. We conclude that, taking into account the uncertainty
estimates, the LO + NLL0 and NLO + NLL0 results are compatible.
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Figure 4: Matched NLO+NLL0 (solid) and LO+NLL0 (dashed) predictions for standard and soft-drop
groomed thrust with � = 0. The lower panels contain the di↵erence between the respective
NLO + NLL0 and LO + NLL0 results (see text).

In Fig. 5, we show our predictions for the transverse-momentum-like total broadening BT with CAESAR

parameters a = 1, b = 0. The general hierarchy between the H ! gg and H ! bb̄ cases is evident. We
observe slightly larger corrections in the di↵erence between NLO- and LO-matched results in the lower
panel. In this case, the di↵erence for gluon-initiated events indeed decays faster, just as the overall
distributions. Otherwise we observe a similar oscillating behaviour as in the ungroomed thrust case.
Close inspection of the hard phase-space region on the far right-hand side of the plot again shows that
the uncertainty bands at LO and NLO do not overlap. As alluded to above, this is consistent with the
findings in [64]. The distribution is dominated by the real corrections at the hard kinematical endpoint.

In Fig. 6, we present corresponding results for the remaining observables, i.e., for the C-parameter, wide
jet broadening, heavy-hemisphere mass, Durham three-jet resolution, and soft-drop thrust with � = 1, 2.
Qualitatively, we observe a similar impact of the NLO corrections as for thrust and total jet broadening,
cf. Figs. 4 and 5. The largest NLO corrections in the di↵erence can be seen for the C-parameter. This is
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Interestingly, while the distributions related to the Higgs to gluon decay mode approach zero much earlier
than those related to the Higgs to quark decay mode, as seen in the upper panels of the figures, this is
not necessarily the case for the di↵erence between the respective LO- and NLO-matched distributions,
shown in the lower panels.

In Fig. 4 we present results for the mass-like thrust ⌧ with CAESAR parameters a = 1, b = 1 and its
soft-drop groomed variant ⌧SD. As mentioned before, for both observables we present the distributions
containing results for the gluonic H ! gg decays as well as for the decays to b-quarks, in the same plot.
In the groomed case, the di↵erence above the transition point ⌧SD ⇠ zcut = 0.1 appears to be somewhat
larger than in the equivalent region of the ungroomed thrust. There appears a non-smooth feature around
the transition point, i.e., ln ⌧SD ⇡ �2.3, which in particular for the H ! gg case is more visible in the
di↵erence than in the actual distribution. Below this point the di↵erence to the leading-order matched
distribution quickly decays. In the ungroomed cases an oscillating behaviour is seen instead, with the
di↵erence transitioning between positive and negative values, with vanishing absolute value. We can
observe in the two panels of Fig. 4 that the leading-order matched result appears to be within the error
band of the NLO+NLL0 result. The only exceptions are the points where the band boundaries cross each
other, as expected for normalised distributions. We conclude that, taking into account the uncertainty
estimates, the LO + NLL0 and NLO + NLL0 results are compatible.
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Figure 4: Matched NLO+NLL0 (solid) and LO+NLL0 (dashed) predictions for standard and soft-drop
groomed thrust with � = 0. The lower panels contain the di↵erence between the respective
NLO + NLL0 and LO + NLL0 results (see text).

In Fig. 5, we show our predictions for the transverse-momentum-like total broadening BT with CAESAR

parameters a = 1, b = 0. The general hierarchy between the H ! gg and H ! bb̄ cases is evident. We
observe slightly larger corrections in the di↵erence between NLO- and LO-matched results in the lower
panel. In this case, the di↵erence for gluon-initiated events indeed decays faster, just as the overall
distributions. Otherwise we observe a similar oscillating behaviour as in the ungroomed thrust case.
Close inspection of the hard phase-space region on the far right-hand side of the plot again shows that
the uncertainty bands at LO and NLO do not overlap. As alluded to above, this is consistent with the
findings in [64]. The distribution is dominated by the real corrections at the hard kinematical endpoint.

In Fig. 6, we present corresponding results for the remaining observables, i.e., for the C-parameter, wide
jet broadening, heavy-hemisphere mass, Durham three-jet resolution, and soft-drop thrust with � = 1, 2.
Qualitatively, we observe a similar impact of the NLO corrections as for thrust and total jet broadening,
cf. Figs. 4 and 5. The largest NLO corrections in the di↵erence can be seen for the C-parameter. This is
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Figure 4: Exclusion limits based on soft-drop groomed fractional energy correlations (from left to right)
FC1.5, FC1, FC0.5.
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Figure 5: Exclusion limits based on fractional energy correlations (from left to right) FC1.5, FC1, FC0.5,
measured individually on the two hemispheres.

Finally, FC0.5 appears to not be sensitive to µqq̄ within the range we consider.

Including soft-drop grooming of the hemispheres does not result in any significant improvements, as shown
in Fig. 4, the equivalent of Fig. 3 but with grooming included. In fact, the limits worsen slightly, which
could to some extend have been anticipated, since there are competing e↵ects at work. Grooming will
remove some information from the radiation pattern, but on the other hand has the potential to reduce
the impact of hadronisation corrections and hence the associated systematic uncertainty. Apparently, this
reduction is not su�cient to compensate for the loss in information, at least with the grooming parameters
we have considered here. One could imagine that an optimisation of zcut and the inclusion of angular
dependence in the soft-drop condition could lead to more competitive results. In addition it is certainly
worth stressing that the combination of probable future refinements of the hadronisation models and the
drastically increased data set of a potential FCC-ee (1012 events vs 107 at LEP-I) will most likely significantly
reduce the uncertainty related to the modelling of the parton-to-hadron transition. To illustrate this, we
present in Appendix A Fig. 7 selected exclusion-limit plots for the scenario of negligible non-perturbative
uncertainties. As anticipated, the limits improve, resulting in µgg = 1 ± 0.05 and µqq̄ < 25 for plain FC1.5,
and µgg = 1 ± 0.06 and µqq̄ < 28 for its soft-drop groomed variant.

One of the major di↵erences of our procedures so far, compared to traditional tagging methods, is that we
e↵ectively tag any event as a whole. When individually tagging jets, or hemispheres for that matter, one
would want to include a requirement that both tags are compatible with the desired final state. To mimic
this, we consider a measurement of the fractional energy correlations but on each hemisphere separately.
We then derive exclusion limits based on the corresponding two-dimensional histograms. While we hope
to expose additional information in this way, it should be clear that this is a more involved observable
definition. In particular, joint resummed calculations of several observables are far less advanced than what
would be available for the distributions considered above. The resulting confidence levels can be found in
Fig. 5. They are somewhat improved compared to the baseline in Fig. 3. In particular, for FC1.5 we obtain
µgg = 1± 0.05 and µqq̄ < 21. This suggests that combining individual results from the two hemispheres into
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Figure 2: Example results for the SHERPA hadronisation tune including model parameter uncertainties in
comparison to data from LEP taken at

p
s = 91.2 GeV. Shown are the charged-particle multiplicity

nch measured by ALEPH [54] (left), thrust T as measured by DELPHI [56] (center), and the B-hadron
energy fraction xB measured by OPAL [58] (right). Each of the SHERPA predictions corresponds
to 107 events, ensuring that the statistical errors are negligible and the depicted uncertainties are
dominated by the variations of non-perturbative model parameters.
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Figure 3: Exclusion limits based on fractional energy correlations (from left to right) FC1.5, FC1, FC0.5.

tunes. They represent our tuning uncertainties by having each replica tuned with a di↵erent, random subset
of Monte-Carlo runs. We extract the uncertainty bands in Fig. 2 by re-running the simulation for each of
the replica tunes, and plot the envelope of the resulting deviations. We find good agreement between our
SHERPA predictions and data, with deviations of the central tune to the data being largely covered by our
estimated non-perturbative uncertainties.

4 Results

Let us now turn to the statistical analysis of event shapes, measured as described in Sec. 2. We add the
histograms corresponding to our analysis to the CONTUR framework [40], and use its statistical analysis
modules to compute confidence levels for the exclusion of di↵erent points in the (µgg, µqq̄) plane.

The two dimensional exclusion limits for µgg versus µqq̄ based on the three fractional energy correlations
FC1.5, FC1 and FC0.5 are shown in Fig. 3, respectively. As already indicated in the introduction, QCD
radiation tends to mainly populate the soft and collinear regions of phase space, where the dead-cone e↵ect
associated to the finite and relatively large masses of the c and b quarks most visibly manifest themselves,
and where di↵erences due to di↵erent colour charges (the CF of quarks versus the CA of the gluons) lead to
directly observable di↵erences in the numbers of particles emitted. Accordingly, the Les-Houches angularity
FC1.5 tends to be the most sensitive observable, since it gives the largest weight to collinear emissions.
Nevertheless, all three choices x = 1.5, 1, 0.5 are able to limit µgg to be within 1 ± 0.10 based on a 68%
confidence limit. However, based on FC1.5 one should be able to set a stronger limit on µgg to be within
1 ± 0.07 and additionally limit µqq̄ < 33, while we can only exclude µqq̄ values larger than 45 based on FC1.
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Summary
• Event shapes as theoretically well controllable taggers


• applicable to hadronic Higgs decays


• enables measurement with minimal (possibly without) modelling input


• strongest limits for  observable, in particular 2D version


• accompanied by precision calculation of event shapes


• NLO+NLL’ almost trivially available


• NNLO+NNLL in principle available


• outlook: studies with next generation of NLL dipole showers (see for example Alaric 
talk on Wednesday)

FC1.5


