Searching for heavy neutral leptons in electron positron colliders

LCWS2024 July 9, 2024 The University of Tokyo

Arindam Das Hokkaido University

Introduction

Few of the very interesting anomalies :

Tiny neutrino mass and flavor mixings Relic abundance of dark matter...

Over the decades experiments have found each and every missing pieces

> Verified the facts that they belong to this family

Finally at the Large Hadron collider Higgs has been observed Its properties must be verified

Strongly established with interesting shortcomings

SM can not explain them

Birth of a new idea : generation of neutrino mass

Weinberg Operator in SM (d=5), PRL 43, 1566(1979)

The dimension 5 operator can be realized in the following ways

Majorana mass term is generated by the breaking of the lepton numbers by 2 units.

within the Standard Model

Steven Weinberg : 1933 – 2021

mass

Tree level SM + Particles Gauge extension Neutrino Left – right general U(1) Singlet, triplet fermions **Triplet** scalars Seesaw, inverse seesaw I, II, III Quantum level I, II, III . . . Higher dimensional operators

Particle content

Dobrescu, Fox; Cox, Han, Yanagida; AD, Okada, Raut; Chiang, Cottin, AD, Mandal; AD, Takahashi, Oda, Okada AD, Dev, Okada

		$SU(3)_c$	$SU(2)_L$	$U(1)_V$	
	q_L^i	3	2	+1/6	x_{i}
	u_R^i	3	1	+2/3	x_{t}
	d_R^i	3	1	-1/3	x_{o}
· · · · · · · · · · · · · · · · · · ·	ℓ_L^i	1	2	-1/2	x_{i}
	e_R^i	1	1	-1	x_{i}
	Н	1	2	+1/2	x'_{H}
	$\overline{N_R^i}$	1	1	0	x_{l}
	Φ	1	1	0	x'_{4}

3 generations of SM singlet right handed neutrinos (anomaly free)

$$\mathcal{L}_{Y} \supset -\sum_{i,j=1}^{3} Y_{D}^{ij} \overline{\ell_{L}^{i}} H N_{R}^{j} - \frac{1}{2} \sum_{i=k}^{3} Y_{N}^{k} \Phi \overline{N_{R}^{k}} N_{R}^{i} N_{R}^{ij} N_{N}^{ij} = \frac{Y_{D}^{ij}}{\sqrt{2}} v_{h}^{ij}$$

aking

$$V_R^k + \text{h.c.},$$
$$m_{N^i} = \frac{Y_N^i}{\sqrt{2}} v_{\Phi}$$

$$m_{\nu} = \begin{pmatrix} 0 & M_D \\ M_D^T & M_N \end{pmatrix} m_{\nu} \simeq -M_D M_N^{-1}$$
Seesaw mechnic

Z' interactions

Interaction between the quarks and Z

Interaction between the leptons and

 $q_{x_L}^f \neq q_{x_R}^f$ affects the phenomenology

Partial decay width Charged fermions $\Gamma(Z' \rightarrow 2f) =$

light neutrinos $\Gamma(Z' \to 2\nu)$

heavy neutrinos $\Gamma(Z' \rightarrow 2N) =$

$$\mathbf{Z}' \qquad \mathcal{L}^q = -g'(\overline{q}\gamma_\mu q_{x_L}^q P_L q + \overline{q}\gamma_\mu q_{x_R}^q P_R q) Z'_\mu$$

$$\mathbf{Z}' \quad \mathcal{L}^{\ell} = -g'(\bar{\ell}\gamma_{\mu}q_{x_{L}}^{\ell}P_{L}\ell + \bar{e}\gamma_{\mu}q_{x_{R}}^{\ell}P_{R}e)Z'_{\mu}$$

$$= N_c \frac{M_{Z'}}{24\pi} \left(g_L^f \left[g', x_H, x_\Phi \right]^2 + g_R^f \left[g', x_H, x_\Phi \right]^2 \right)$$

$$=\frac{M_{Z'}}{24\pi} g_L^{\nu} \left[g', x_H, x_\Phi\right]^2$$

$$\frac{M_{Z'}}{24\pi} g_R^N \left[g', x_\Phi \right]^2 \left(1 - 4 \frac{m_N^2}{M_{Z'}^2} \right)^{\frac{3}{2}}$$

Production of right handed neutrinos in electron colliders

Decay

Production cross sections of RHNs in electron positron colliders

FIG. RHN production cross section at the linear collider considering $e^+e^- \rightarrow N_1\nu_1$ process at the different center of mass energies. 1000 100 10 10 σ [fb] 0.100 م[**[** 0.100 0.010 \sqrt{s} = 250 GeV -- √s=350 GeV 0.010 0.001 $\sqrt{s} = 500 \text{ GeV}$ 0.001 10-4 200 300 400 100 500 500 M_N[GeV]

RHN production cross section at the linear collider considering $e^+e^- \rightarrow N_2\nu_2(N_3\nu_3)$ process at the different center of mass FIG. energies from the s channel Z boson exchange.

2304.06298

Signal : $\ell + \nu + J$ SM Backgrounds : $\nu_{e}W, WW, ZZ \rightarrow \nu\nu jj, ZZ \rightarrow eejj, t\bar{t}$

Cuts : $\sqrt{s} = 1(3)$ TeV $P_T^J > 150(250) \text{ GeV}$ $P_T^{\ell} > 100(200) \text{ GeV}$ $M_J > 70 \text{ GeV}$ $|\cos \theta_{\ell(e)}| \le 0.85$

FIG. (CMS13-*ee*) [113], respectively.

The prospective upper limits on $|V_{eN}|^2$ at the 1 TeV (red band) and 3 TeV (blue band) linear colliders at the 1 ab^{-1} luminosity for $e + J + p_T^{\text{miss}}$ signal compared to EWPD [105–107], LEP2 [108], GERDA [109] $0\nu 2\beta$ study from [13], ATLAS (ATLAS8-ee) [111], CMS (CMS8-ee) [112] at the 8 TeV LHC, 13 TeV CMS search for $e^{\pm}e^{\pm} + 2j$ (CMS13-ee) [113] and 13 TeV CMS search for 3ℓ

FIG. is obtained combining SSSF and SSDF signals. The corresponding s-channel processes has been included in the analyses.

$$e^{\pm} + 4j, \sqrt{s} = 250 \text{ GeV}$$

		Signal		Background	
\sqrt{s} (GeV)	M_N (GeV)	before cuts (fb)	after cuts (fb)	before cuts (fb)	after cuts (fb)
	20	4108	63.26	102.86	4.21
	40	3629	290.3	102.86	4.21
250	60	2923	426.7	102.86	4.21
	80	3460	477.8	102.86	4.21

TABLE 1 Cross sections of the signal (normalized by $|V_{eN}|^2$) and generic background before and after cuts for $e^-\gamma$ collider at $\sqrt{s} = 250$ GeV for the final state $e^{\pm} + 4j$. We have used the following cuts: 60 GeV $< m_{ij} < 100$ GeV, $\cos \theta_{\ell_1} < 0.94, \ p_T^{j_{1,\text{leading}}} > 25 \text{ GeV}, \ p_T^{j_{2,\text{trailing}}} > 15 \text{ GeV}, \ p_T^{j_{3,\text{trailing}}} > 10 \text{ GeV}, \ p_T^{j_{4,\text{trailing}}} > 7 \text{ GeV} \text{ and } p_T^{\ell} > 12 \text{ GeV}.$

 $e^{\pm} + 4j$ (left) and SSDL (right, $\ell^- = e^-, \mu^-$) final states in the context of $e^-\gamma$ colliders. The SSDL signal

$$e^{\pm}e^{\pm} + 2j, \sqrt{s} = 250 \text{ GeV}$$

		Signal		Background	
\sqrt{s} (GeV)	M_N (GeV)	before cuts (fb)	after cuts (fb)	before cuts (fb)	after cuts (fb)
	20	539.18	11.93	2.02	0.105
	40	467.44	24.71	2.02	0.105
250	60	379.17	47.05	2.02	0.105
	80	1676.1	223.91	2.02	0.105

Cross sections of the signal (normalized by $|V_{eN}|^2$) and generic background before and after cuts for TABLE $e^{-\gamma}$ collider at $\sqrt{s} = 250$ GeV for the SSDL final state. We have used the following cuts: $p_T^{j_1,\text{leading}}, p_T^{j_2,\text{trailing}} > 10$ GeV, $p_T^{\ell_1, \text{leading}}, p_T^{\ell_2, \text{trailing}} > 10 \text{ GeV}, 60 \text{ GeV} < m_{j_1 j_2} < 100 \text{ GeV} \text{ and } \cos \theta_{l_{1, \text{leading}}} < 0.9, \cos \theta_{l_{2, \text{trailing}}} < 0.92.$

Conclusions

where which can explain ceanrios.
on of the tiny neutrino nism, under investigation electron photon colliders . ed in these scenarios rino searches at e ⁻ e ⁺ colliders .
ts is to find a new particle, of the of the new ous BSM aspects.

