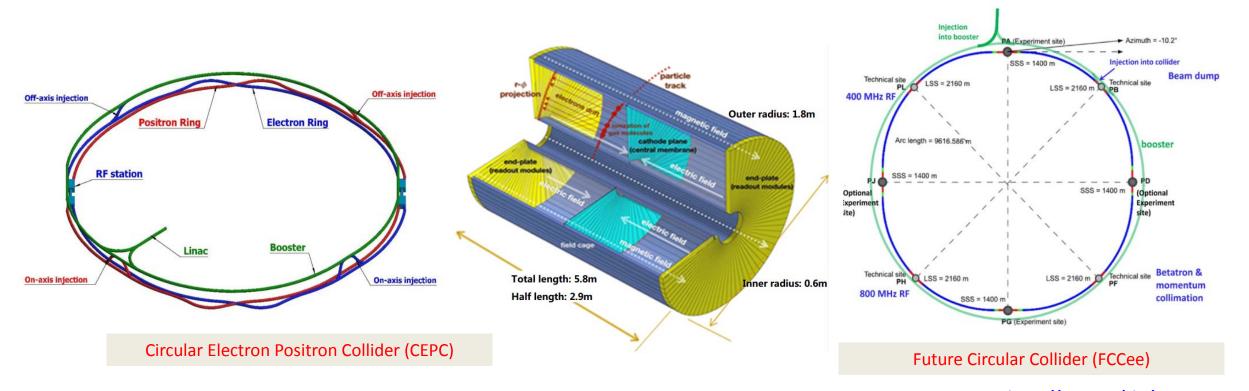


High Granularity Readout TPC R&D for Tera-Z at the Future e+e- Collider

Huirong Qi on behalf of CEPC TPC Study Group and some inputs from LCTPC international collaboration


Institute of High Energy Physics, CAS July 10, 2024, Tokyo, Japan

- Motivation and physics requirements
- High granularity readout TPC
- Performance and readiness of TPC R&D
- Summary

• Motivation and physics requirements

Motivation and physics requirements on e+e- collider

- A TPC is the main track detector for **some candidate experiments at future e+e- colliders**
 - Baseline detector concept of ALICE, STAR, CEPC CDR and ILD at ILC
 - TPC is a promised candidate as the main track detector in CEPC TDR
- TPC technology can be of interest for other future colliders (EIC, FCC-ee, KEKb...)
- Pixelated readout TPC is potential to **improve PID requirements of Flavor Physics** at e+e- collider.

https://arxiv.org/abs/1811.10545 Huirong Oi

Physics requirements of the track detector

- CEPC operation stages: 10-years Higgs \rightarrow 2-years Z pole \rightarrow 1-year W
- CEPC phy./det. TDR (preparation)
 - Physics and detector concept designed under the principle.
 - Requirements may be with regard to runs of Higgs and Z-pole separately.
 - Mandatory requirements MUST be met.
 - Detector should primarily meet Higgs and run at Z also.

HER CEPC CHI CON 2023 DE MER AC 2023 DE MER

Chapter 3 of this report outlines that the CEPC is planned to be in operation for 8 months annually, totaling 6,000 hours. This operational schedule is used to calculate the cumulative absorbed doses for magnet coil insulations, as illustrated in Figure 4.2.4.16, considering a 10-year Higgs operation, 2-year Z operation, and 1-year W operation. Figure 4.2.4.17 displays the absorbed doses when an additional 5-year $t\bar{t}$ operation is included. These plots also include the upper limit for absorbed dose in epoxy resin, which is measured at 2 × 10⁷ Gy [11].

CEPC- TDR p116

Physics requirements on future circular e+e- collider

- Phys. Requirements of the track detector
 - TPC can provide thousands of hits with high spatial resolution compatible with PFA algorithm ($low X_0$)
- Beneficial for jet & differential at higher energy
 - BMR < 4% & pursue 3%
 - Highly requirements for excellent JOI & PID resolution (in Jets)
 - Provide $dE/dx + dN/dx \sim 2-3\%$

	Processes @ c.m.s.	Domain	Total Det. Performance	Sub-D	Differential Efficiency.			
H->ss/cc/sb	vvH @ 240 GeV	Higgs	PFA + JOI (Jet origin id)	All sub-D, especially VTX	Requirement: Pt threshold ~ o(100) MeV, cos(theta) < 0.99			
Vcb	WW@ 240/160 GeV	Flavor	JOI + Particle (lepton) id	All	Ref: CDR baseline design			
W fusion Xsec	vvH @ 360 GeV	Higgs	PFA + JOI	All	– Differential Material Budget.			
α_s	Z->tautau @ 91.2 GeV	QCD	PFA: Tau & Tau final state id	ECAL + Tracker material	Requirement: < 10%/50% X0 in Barrel/endcap			
B->DK	91.2 GeV	Flavor	PFA + Particle (Kaon) id	All, especially Tracker & ToF	Ref: CDR baseline design + BMR & Material Dependence			
				•				
Weak mixing angle	Z	EW	IOL	All	Differential Resolution of 5 track parameters.			
Higgs recoil	IIH	Higgs	Leptons id, track dP/P	Tracker, All	Requirement: In the barrel			
H->bb, cc, gg	vvH	Higgs	PFA + JOI	All	δ (D0/Z0) ~ < 3 micro meter at 20 GeV			
	qqH	Higgs	PFA + JOI + Color Singlet id	All	$\delta(\text{Pt})/\text{Pt} \simeq o(0.1\%)$			
H->inv	qqH	Higgs/NP	PFA	All	Ref: CDR baseline performance			
H->di muon	qqH	Higgs	PFA, Leptons id	Calo, All				
H->di photon	qqH	Higgs	PFA, Photons id	ECAL, All	Differential Pid Capability: eff*purity of Kaon id @ Z pole.			
					Requirement: eff*purity > 90% for all charged Kaon (@ Z pole)			
W mass & Width	WW@160 GeV	EW	Beam energy	NAN	 relative resolution of dE/dx (or dN/dx) be better than 3% ToF of 50 ps 			
Top mass & Width	ttbar@360 GeV	EW	Beam energy	NAN	Ref: Nuclear Inst. and Methods in Physics Research, A 1047 (2023) 167835			
Bs->vvPhi	Z	Flavor	Object in jets; MET	All	Sep. power: On 3 prong tau decay @ Z pole.			
Bc->tauv	Z	Flavor	-	All	Requirement: efficiency > 99% at 3-prong tau			
B0->2 pi0	Z	Flavor	Particle/pi-0 in jets	ECAL	Ref: CDR baseline performance			
T_{11} for T_{12}								

Table from IAS2024 conference in January

• High granularity readout TPC for CEPC TDR

Pad readout TPC – Low power consumption and hybrid readout @IHEP

- Low power consumption ASIC has been developed for TPC readout.
 - Low power consumption FEE ASIC (~2.4 mW/ch including ADC)
- Hybrid readout module has been developed:
 - IBF×Gain ~1 at Gain=2000 validation with GEM/MM readout
 - Spatial resolution of $\sigma_{r_{\varphi}} \leq 100 \ \mu m$ by TPC prototype
 - Pseudo-tracks with 220 layers (same as the actual size of CEPC baseline detector concept) and dE/dx is about 3.4 \pm 0.3%

<u>م [باسا</u>

450

400

350

300

250

200

150

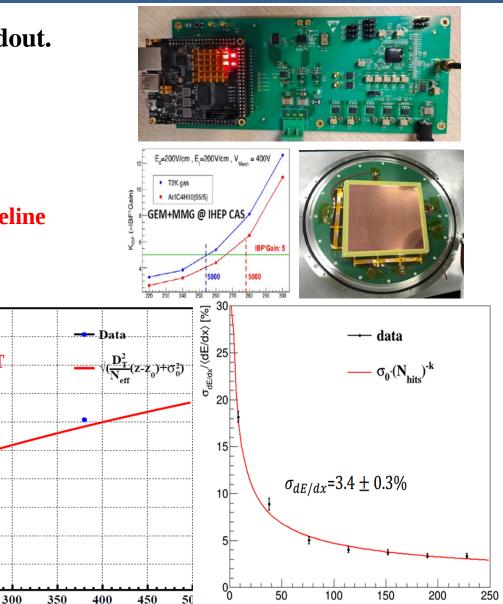
100

50

50

100

150

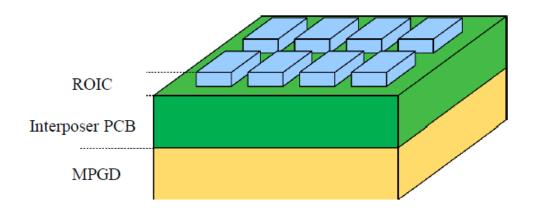

200

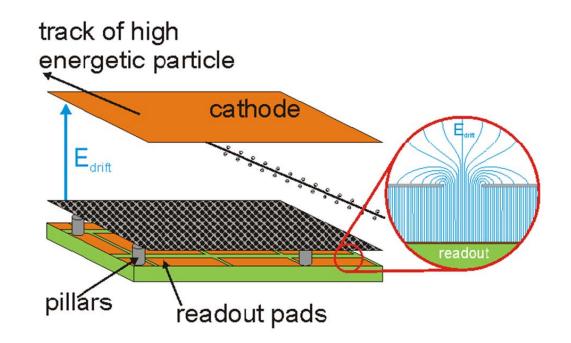
250

Without the magnetic field B=0T

Neff ~40 (Calibrated using ⁵⁵Fe)

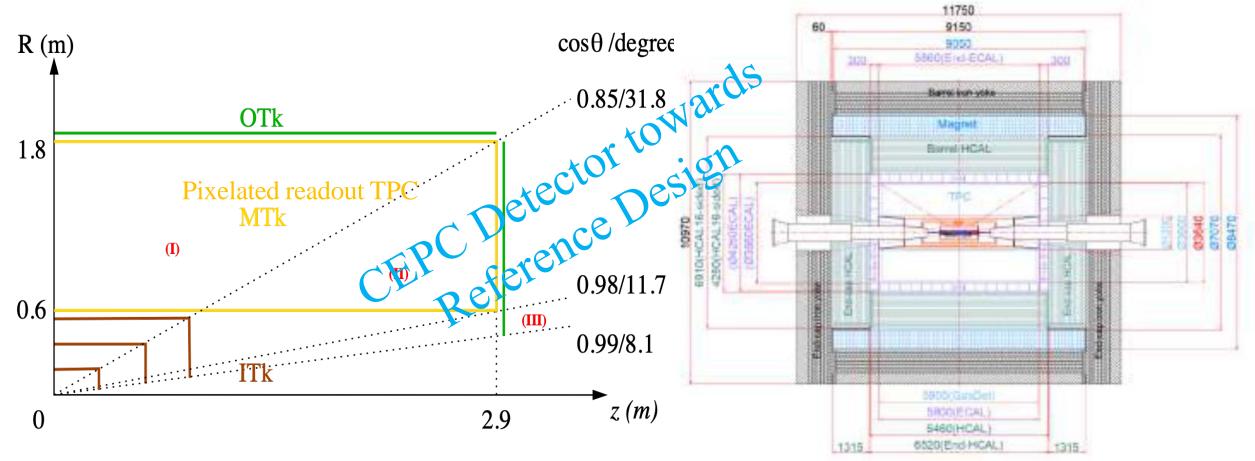
UV laser mimicking the tracks



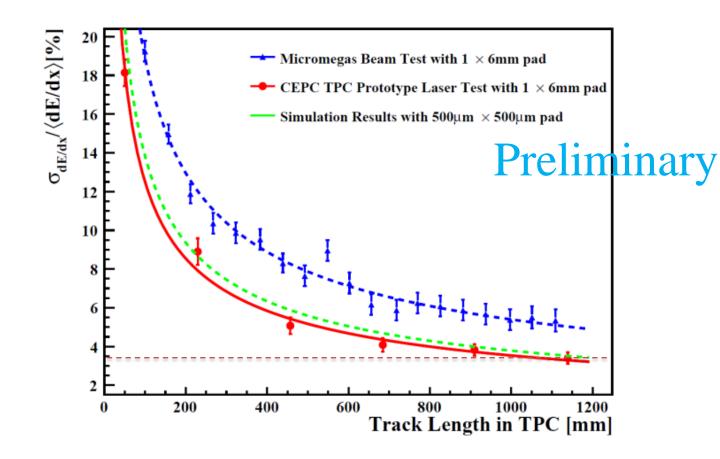

z [mm

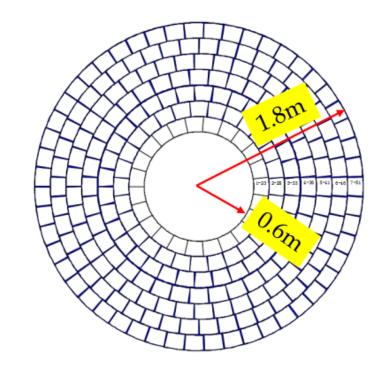
https://doi.org/10.1016/j.nima.2022.167241 Huirong Oi # hits in track

Pixelated readout TPC technology for CEPC TDR


- A pixelated readout TPC is **a good option to provide realistic physics requirements** of Higgs Physical and Tera-Z Physics also (2E36) at CEPC.
 - Pixelated readout \rightarrow better resolution \rightarrow low gain \rightarrow less distortion
- **Highlights** of Pixelated readout TPC technology for CEPC TDR
 - Can deal with high rates (MHz/cm²)
 - High spatial resolution \rightarrow better momentum resolution
 - PID: dE/dx + dN/dx (**In space**)
 - Excellent two tracks separation

Track detector system in CEPC Phy.&Det. TDR


- The track detector system's geometry finalized.
 - All of physics simulation used the updated geometries for CEPC TDR document
 - Silicon combined with gaseous chamber as the tracker and PID
 - **Baseline:** Pixelated readout TPC as the **main track (MTK)** from radius of 0.6m to 1.8m

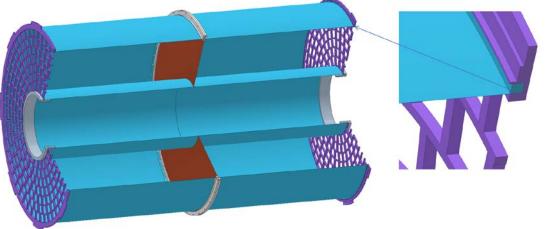

Geometry of the track detector system in CEPC IDK

PID Performance using dE/dx

- A higher granularity is also very helpful for improving dE/dx.
- According to simulation results, for a pad size of 500um, with the current 1.2-meter track length of CEPC, the dE/dx can reach 3.2%.

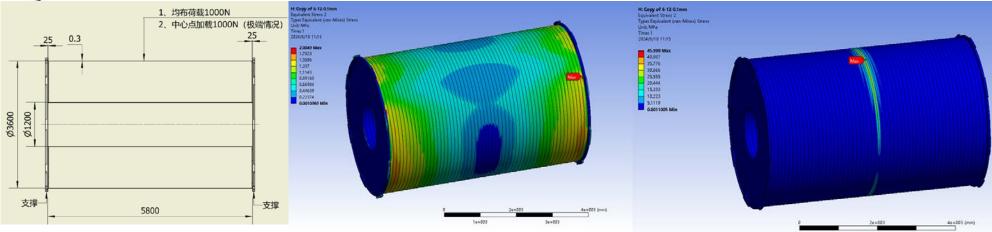
$$\sigma_{dE/dx} \sim L^{-0.47} \times G^{-0.13}$$

• Performance and readiness of TPC detector R&D

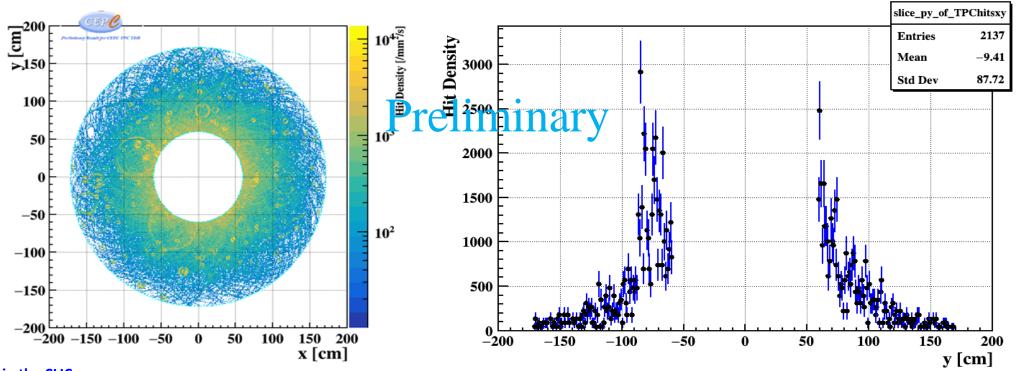

• Performance studies of the high granularity readout TPC

- Material budget at endcape/barrel
- Occupancy and hit density
 Improved dE/dx+dN/dx for PID
- **Critical key V** Ion backflow suppression
 - Reasonable channels and power consumption
 - Running at 2 Tesla
 - Beamstrahlung and distortion
 - **Prototype validation**

issues


#1. Material budget at endcape/barrel Carbon Fibber 🗸

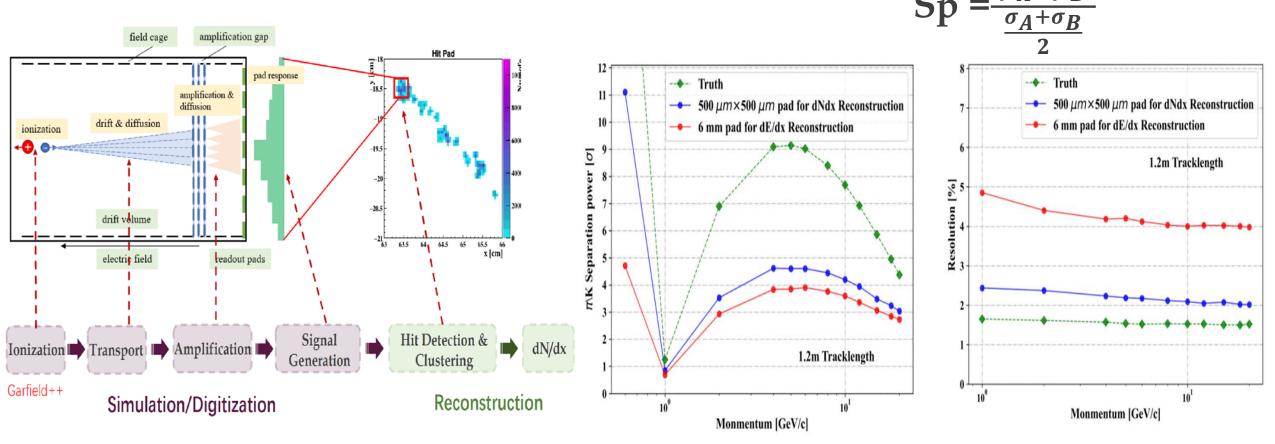
- Consideration of new Carbon Fiber barrel instead of the honeycomb barrel
- Ultra-light material of the TPC barrel : 0.63% X_0 in total, including
 - FEA preliminary calculation: 0.2mm carbon fibber barrel can tolerant of LGAD OTK (100Kg)
- Optimization of the connection back frame of the endcap (on going)


Material budget of TPC barrel

Layer of the barrels	D[cm]	X ₀ [cm]	d/X ₀ [%]
Copper shielding	0.001	1.45	0.07
CF outer barrel	0.020	25.28	0.08
Mirror strips	0.003	1.35	0.19
Polyimide substrate	0.005	32.65	0.02
Field strips	0.003	1.35	0.19
CF inner barrel	0.020	25.28	0.08
Sum of the r	0.63		

#2. Occupancy and hit density \checkmark

- Low voxel occupancy : 1E-5 to 1E-6 (cite#2)
- At 2 E36 with Physics event only, even bunch distribution(cite#3).
 - Pixelated readout much **LOWER** inner most occupancy (**0.6m inner radius**)
 - Pixelated readout can easily handle a high hits rate at Z pole. (cite#4)
 - The data at the inner radius @40M BX Z pole@1 Module ~0.05Gbps(Maximum).

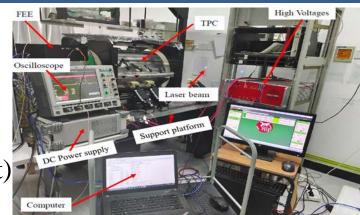

Cite#2 Occupancy in the CLIC Cite#3 https://doi.org/10.1088/1748-0221/12/07/P07005 Cite#4 GridPix detectors

Simulation of Tera-Z/CEPC with the beamstruggle

Huirong Qi

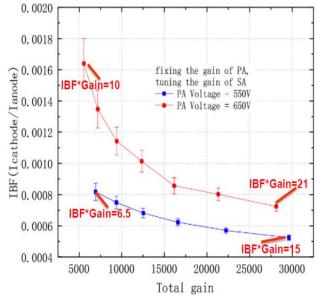
#3. Improved dE/dx+dN/dx √

- Full simulation framework of pixelated TPC developed using Garfied++ and Geant4 at IHEP
- Investigating the π/κ separation power using reconstructed clusters, a 3σ separation at 20GeV with 50cm drift length can be achieved
- dN/dx has significant potential for **improving PID resolution**



Cite#5 DOI: 10.22323/1.449.0553 Cite#6 EPS-HEP 2023 talk by Yue Chang Huirong Oi

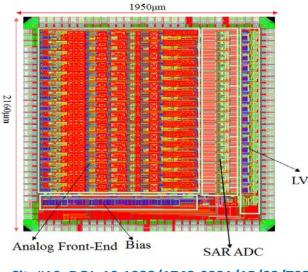
Simulation of TPC detector under 3T/2T and T2K mixture gas


#4. Ion backflow suppression

- Achievement by far from TPC module and prototype:
 - Supression ions hybrid TPC module
 - IBF × Gain ~1 at Gain=2000 validation with TPC module
 - Spatial resolution of $\sigma_{r_0} \leq 100 \ \mu m$ by TPC prototype
 - dE/dx for PID: <3.6% (as expected for CEPC baseline detector concept)
 - Graphene foil suppression (on going @ Shangdong University)

E_d =200V/cm , E_t =200V/cm , V_{Mesh} = 400V Data background MM:Full energy peak GEM-MM:Escape peak T2K gas GEM-MM:Full energy peak Gaus+background fit Ar/iC4H10(95/5) 1500 Transfer Region 1.4m IBF*Gain: 5 Avalanche Region 0.128mm 5000 5000 250 260 270 280 290 220 240 300 400 600 800 1000 1200 V_{GEM} [V] 1400 ADC Channels Cite#7: DOI:10.1016/j.nima.2020.164282 Cite#8: CERN-OPEN-2021-012. 2021

IBF of double mesh MM @USTC/Jianbei Liu


Hybrid TPC module and Double-mesh detector module

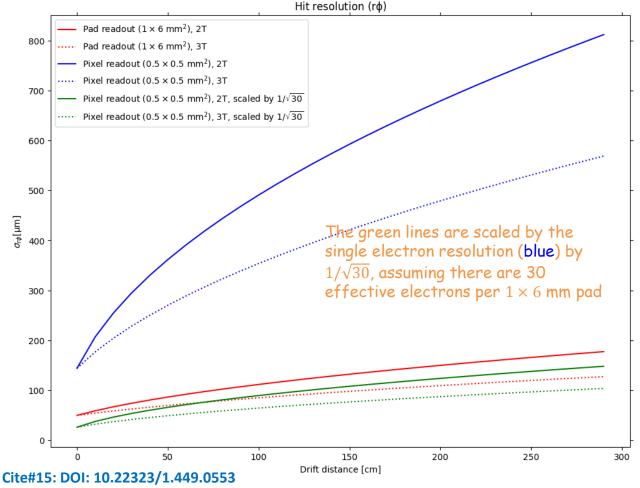
Huirong Qi

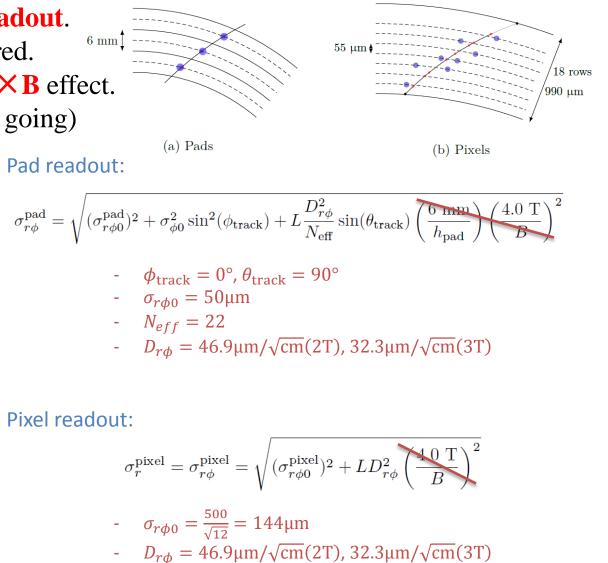
Cite#9: IJMPA 36.22 (20212142015

#5. Reasonable channels and power consumption \checkmark

- Power consumption relative with the high granularity readout
 - Pad readout TPC@1mm×6mm pad size
 - Total channels: 10^6 ; Total power: <10 kW using 2-phase CO₂ cooling
 - Pixelated readout TPC at the endcap
 - Total power: <10 kW
 - 2-Phase CO₂ cooling
 - <100mW/cm²
 - ASIC chip and TPC prototyping R&D

	PASA+ALTRO	Super-ALTRO	SAMPA	WASA_v1
TPC	ALICE	ILC	ALICE upgrade	CEPC
Pad Size	4x7.5 mm ²	1x6 mm ²	4x7.5 mm ²	1x6 mm²
No. of Channels	5.7× 10 ⁵	$1\text{-}2 imes10^6$	$5.7 imes10^5$	2 x×10 ⁶
Readout Detector	MWPC	GEM/MicroMegas	GEM	GEM/MicroMegas
Gain	12 mV/fC	12-27 mV/fC	20/30 mV/fC	10-40 mV/fC
Shaper	CR-(RC) ⁴	CR-(RC) ⁴	CR-(RC) ⁴	CR-RC
Peaking time	200 ns	30-120 ns	80/160 ns	160-400 ns
ENC	370+14.6 e/pF	520 e	246+36 e/pF	569+14.8 e/pF
Waveform Sampler	Pipeline ADC	Pipeline ADC	SAR ADC	SAR ADC
Sampling Rate	10 MHz	40 MHz	10 MHz	10-100 MHz
Sampling Resolution	10 bit	10 bit	10 bit	10 bit
Power: AFE	11.7 mW/ch	10.3 mW/ch	9 mW/ch	1.4 mW/ch
Power: ADC	12.5 mW/ch	33 mW/ch	1.5 mW/ch	0.8 mW/ch@40 MH
Power: Digital Logics	7.5 mW/ch	4.0 mW/ch	6.5 mW/ch	2.7 mW/ch@40 MH
Total Power	31.7 mW/ch@10MHz	47.3 mW/ch@40 MHz	17 mW/ch@10 MHz	4.9 mW/ch@40 MH
CMOS Process	250 nm	130 nm	130 nm	65 nm

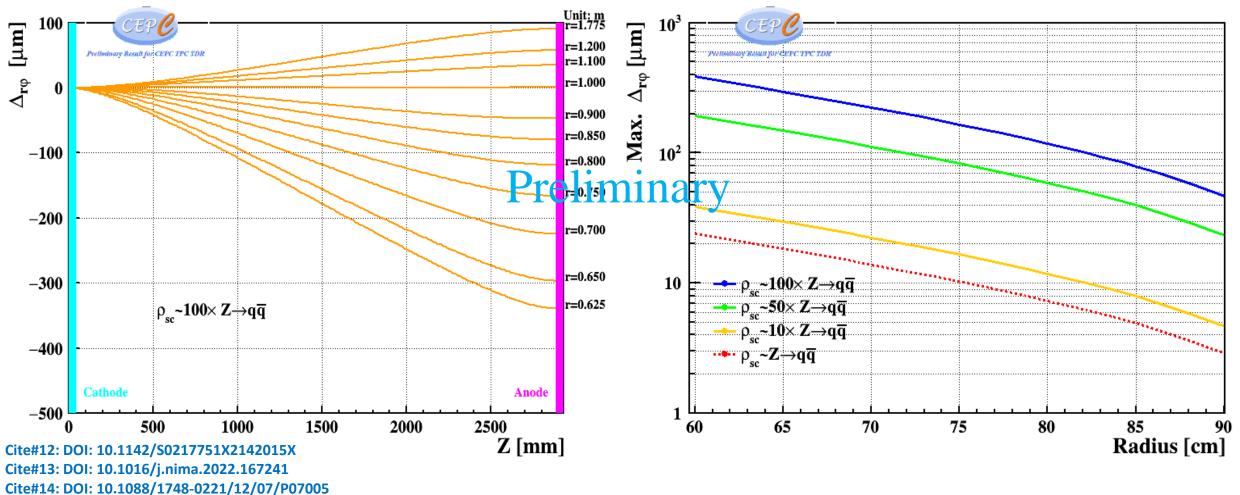

Cite#10: DOI: 10.1088/1748-0221/15/02/T02001 Cite#11: DOI: 10.1088/1748-0221/15/05/P05005 Huirong Oi


#6. Running at 2 Tesla √

Huirong Oi

Estimation of the spatial resolution using pixelated readout.

- The granularity and the transverse diffusion considered.
- TPC can work well at the 2T B-field without any $\mathbf{E} \times \mathbf{B}$ effect.
- Distortion will be considered proportionally at Z (on going)



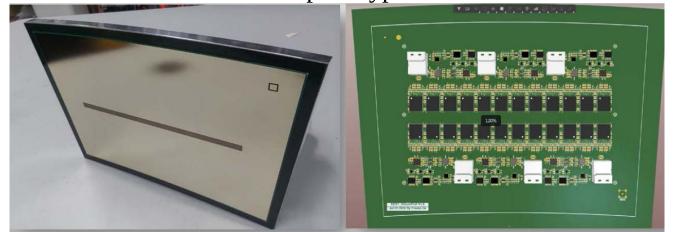
19

#7. Beamstrahlung and distortion √

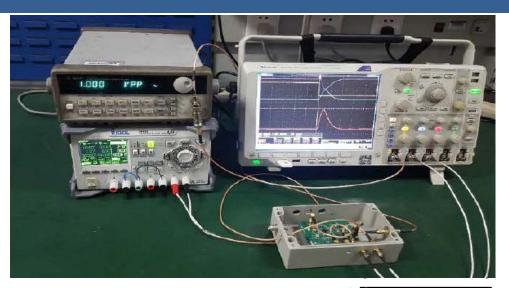
- Maximum distortion with e+e- to qq at Z pole (Physics events only)
- Maximum distortion under the different Beamstrahlung background $(\times 10, \times 50, \times 100$ times Physics events)
 - MDI design at Z need carefully optimized with MDI group in CEPC

Huirong Oi

Option concept: Pixelated readout TPC $@\cos\theta \approx 0.98$


Parameters	Higgs run	Z pole run
B-field	3.0T	2.0T
Pad size (mm)/All channels	0.5mm×0.5mm/2×3×10 ⁷	0.5mm×0.5mm/2×3×10 ⁷
Material budget barrel	0.012 X ₀	0.012 X ₀
Material budget endcap	0.17 X ₀	0.17 X ₀
Points per track in rφ	2300	2300
σ _{point} in rφ	120μm (full drift)	400μm (full drift)
σ _{point} in rz	≃ 0.1 – 0.4 mm (for zero – full drift)	$\simeq 0.2 - 0.8 \text{ mm}$ (for zero – full drift)
2-hit separation in rq	0.5mm	0.5mm
K/ π separation power @20GeV	3σ	3σ
dE/dx	3.2%	3.2%
Momentum resolution normalised:	a = 1.210 e -5	a = 2.69 e -5
$\sigma_{1/pT} = \sqrt{a^2 + (b/pT)^2}$	b = 0.589 e -3	b = 0.90 e -3

|#8. Prototype valiadation of pixelated TPC for TDR 🔥


- R&D on Pixelated TPC readout for CEPC TDR
 - Pixelated readout TPC ASIC chip developed and 2nd prototype wafer has done and tested.
 - The TOA and TOT can be selected as the initiation function in the ASIC chip
 - $500\mu m \times 500\mu m$ pixel readout designed
 - Noise of FEE: 100e
 - Time resolution: 14bit (5ns bin)
 - Power consumption: ~100mW/cm²

• Prototyping pixelated readout TPC detector

• The validation of the prototype assembled

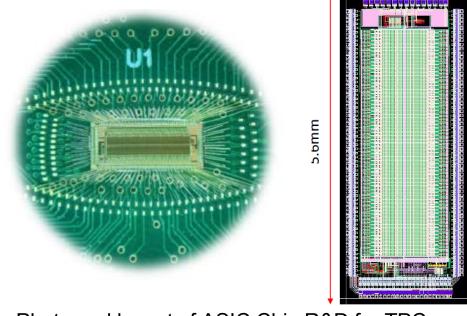


Photo and layout of ASIC Chip R&D for TPC

- TPC detector prototype R&D using the pad readout towards the pixelated readout for the future e+e- colliders, espial to the high luminosity Z pole run at CEPC.
- Pixel TPC is in the simulation framework has been developed using Garfied++ and Geant4 at IHEP. To analyze the simulate the performance of the high luminosity Z pole run at CEPC, some validation of TPC prototype have been studies.
- High granularity readout TPC can be as a realistic and promised track detector for CEPC TDR.
- Synergies with CEPC/LCTPC/FCCee/EIC allow us to continue R&D and ongoing, we learn from all of their experiences..

We kindly acknowledge the following funding agencies, collaborations:

- > National Key Programme for S&T Research and Development (Grant NO.: 2016YFA0400400)
- National Natural Science Foundation of China (Grant NO.: 11975256)
- National Natural Science Foundation of China (Grant NO.: 11535007)
- National Natural Science Foundation of China (Grant NO.: 11775242)
- National Natural Science Foundation of China (Grant NO.: 11675197)

Many thanks!

LCWS2024 International Workshop on Future Linear Colliders
