Tracking Performance Studies for Future Circular Collider (FCCee) with CLD Detector

Gaelle Sadowski

LCWS2024 - 10 july 2024

Uni	versité			
	de Strasbourg			

FCC (Future Circular Colider)

Advantages of e^+e^- Colliders

- Low Background
- Well-defined Initial State
- High Precision Measurements ⇒ High statistic ⇒ high luminosity

Goals

- Detector optimisation by defining different geometries for vertex and tracker
- Study detector tracking and vertexing performance for physics and sensitivity to new physics
- Full Simulation is needed to have more precise results, the detector concept CLD is used for these studies

Outlook

1 CLD detector and tracking algorithm

2 Tracking Resolution

- Effect of smaller Beam Pipe
- Effect of vertex spatial resolution
- Effect of shrunk tracker
- Effect of stronger magnetic field

CLD* detector concept at FCCee

Consolidated option based on the detector design developed for CLIC detector

- All silicon vertex detector and tracker
- ▶ 3D-imaging highly-granular calorimeter system
- Coil outside calorimeter system
- Resistive plate chambers muons detector

*CLIC-like detector

Gaelle Sadowski

CLD tracker geometry

• Inner and Outer Silicon Tracker, mostly 50 μ m pitch strips

- ▶ 3 short and 3 long barrel layers, 7 inner and 4 outer endcaps
- ► 200 μ m Silicon thickness, 50 μ m × 0.3 mm cell size, 7 μ m × 90 μ m single point resolution (except first inner tracker disk, 5 × 5 μ m²)
- Tracking optimisation with full silicon tracker
 - larger material budget
 - ▶ No space for PID^a

^aParticle identification detector

- robust technology
- high single point resolution
- tune to sustain higher particle rate

Gaelle Sadowski

More details on CLD o1 v04

LCWS2024

Tracking Conformal Tracking*

• **Conformal mapping:** coordinates (x, y) in Euclidean space are converted to coordinates (u, v) in conformal space, circles passing through the origin are transformed into straight lines

$$u = \frac{x}{x^2 + y^2}, \quad v = \frac{y}{x^2 + y^2}$$

• Cellular Automaton Track Finding: for pattern recognition

*Conformal Tracking @CLIC Gaelle Sadowski

Tracking

• Sequential track seeding and findings steps: hits not part of a track after step N are used in step N+1

- VXDBarrel: build track seeds in the vertex barrel
- VXDEndcap: extend track seed through the vertex endcaps
- ► LowerCellAngle1: build track candidates with tight cuts for high-*p*_T tracks
- LowerCellAngle2: build track candidates with looser cuts to reconstruct low-p_T tracks
- Tracker: extends all existing partial tracks through the tracker
- Displaced: build additional tracks with optimised cuts for displaced tracks from all the leftover hits

- Simulate particle gun events
 - Single particle event with fixed momentum and θ and flat ϕ
 - Done with muons, electrons and pions
- Matching reconstructed track simulated particle
- Calculation of resolution: $\sigma(\Delta = \text{reco} \text{true})$
 - ► For p and pT, resolution: $\sigma((\Delta = \text{reco} - \text{true}) / \text{true}^2)$
- Calculate resolutions by changing VTX resolution
 - Defined as the smearing for simulated hits with resolution VTX values (3 μ m, 5 μ m,...) as the Gaussian width

Effect of shortened vertex detector and Beam Pipe material budget Beam Pipe and Vertex geometry

- Improvement of the d₀ resolution in the new geometry (o2_v05)
 - Smaller vertex radius compensates fully for the increased material budget in beam pipe

CLD_o2_v05

Beam Pipe radius: 10 mm

CLD o1 v04 (nominal geometry)

Beam Pipe material: Beryllium

Beam Pipe radius: 15 mm

- Beam Pipe material: AlBeMet 0.35 mm
 + paraffin 1 mm + AlBeMet 0.35 mm
- Beam Pipe thickness: 1.7 mm + 5 μ m gold
- $X/X0 = 0.61 \% \Rightarrow + 33 \%$ material budget

Vertex Barrel [mm]	R_1	R_2	R_3	L
o1_v04	17.5	37	57	125
o2_v05	13.0	35	57	109

Effect of vertex spatial resolution

 d_0 & pT resolution - single μ^- - CLD_o2_v05 (10k events)

• d_0

As expected, very sensitive to intern layer, particularly at high p_T Material budget is dominant for low p_T

Effect is smaller, some effect at high impulsion in barrel

Digitisation is made by smearing simulated hits with spatial resolution values as the Gaussian width

Gaelle Sadowski

рт

CLD with PID

Tracker geometry – CLD_o2_v05 & CLD_o3_v01 = RICH* and adapted trackers

doi.org/10.1016/j.nima.2018.08.078

$$\Delta d_0|_{res} \approx \frac{3\sigma_{r\phi}}{\sqrt{N+5}} \sqrt{1 + \frac{8r_0}{L_0} + \frac{28r_0^2}{L_0^2} + \frac{40r_0^3}{L_0^3} + \frac{20r_0^4}{L_0^4}}{\frac{\Delta p_T}{\rho_T}}|_{res} \approx \frac{12\sigma_{r\phi}\rho_T}{0.3B_0L_0^2} \sqrt{\frac{5}{N+5}}$$

⇒ lever arm reduced by 10 % ⇒ p_T res should degrade by ≈ 20%

⇒Need space

Outer Tracker Barrel [mm]	R_1	R_2	R	3			
o2 v05	1000	1568	8 2136				
o3_v01	1000	1446.8	46.8 1849.2				
Outer Tracker Endcap [mm]	Z_0	Z_1	Z_2	Z_3			
o2_v05	1310	1617	1883	2190			
o3 v01	1310	1547	1752	1990			
Outer tracker barrel and endcap were shrunk							

CLD_03_v01: CLD_02_v05 with shrunk Outer Tracker + PID detector *10.1016/j.nima.2019.02.009 (use Cherenkov radiation)

CLD with PID

Tracker geometry - CLD_o2_v05 & CLD_o3_v01

- p_T resolution depend mainly on lever arm
- Differences observed are compatible with analytic formula pprox 15 %
- For $\theta = 50$ °: transition Barrel / Endcap

LCWS2024

CLD_03_v01: CLD_02_v05 with shrunk Outer Tracker + PID detector

Gaelle Sadowski

Effect of magnetic field

- Magnetic field of **2 T** is imposed for Z peak ($\sqrt{s} = 91$ GeV)
- 2 T to 3 T (without any consideration of whether it is possible)increase p_T resolution and compensate the loss of p_T resolution caused by the shrunk tracker

CLD: magnetic field = 2 T

14/15

- Study track resolution with different single point resolution and tracker (beam pipe) geometries
- Several spatial resolution for vertex tested, also for 1 micron, to test extreme case (while probably not realistic)
- Improvement of the d0 resolution in the geometry with smaller beam pipe (CLD_o2_v05)
- ≈ 15 % degradation of p_T resolution in CLD_o3_v01 with ARC
- Can be recovered by increasing magnetic field to 3 T, p_T resolution even better
- Next step will be to study impact of geometry on physics analysis

Backup

• Simulate particle gun events

- \blacktriangleright Single particle event with fixed momentum and θ and flat ϕ
- Done with muons, electrons and pions
- Matching reconstructed tracks simulated particle
- Calculation of resolution: $\sigma(\Delta = \text{reco} \text{true})$
 - For p and pT, resolution: $\sigma((\Delta = \text{reco} - \text{true}) / \text{true}^2)$
 - Resolution is the width of the gaussian fit, or crystal ball fit for electron momentum
- Calculate resolutions by changing VTX resolution
 - Defined as the smearing for simulated hits with resolution VTX values (3 μ m, 5 μ m,...) as the Gaussian width

2/2