

Karlsruhe Institute of Technology

Institute for Theoretical Physics

BSM Triple Higgs couplings (at one-loop) at e^+e^- Colliders

Francisco Arco (he/him)

International Workshop on Future Linear Colliders (LCWS2024) Higgs, Electroweak Parallel Session University of Tokyo, Japan – July 10, 2024

Ongoing work with S. Heinemeyer and M. Mühlleitner

Motivation: BSM in the Higgs Sector

- The Higgs boson potential is essentially untested
- Extended Higgs sectors can solve (at least some) of the SM problems
 - Dark matter, baryon asymmetry...
- Framework: Two Higgs doublet model (2HDM)
 - 5 Higgs bosons h, H, A, H[±] + new scalar interactions
 - Large scalar couplings are still allowed! [FA, Heinemeyer, Herrero, 21, 22]

Sketch of the current uncertainty in the (SM) Higgs potential, by Nathaniel Craig

Where to look? At e^+e^- colliders!

Large scalar couplings can give large 1L corrections to triple Higgs couplings (THCs) → potential signal at high energy e⁺e⁻ colliders
 e.g. 1L λ⁽¹⁾_{hhh} correction can be well above 100% w.r.t the tree level [Kanemura, Kiyoura, Okada, Senaha, Yuan, 02]

- Bibliography in the 2HDM:
 - Tree-level THCs @ e^+e^- colliders (also VBF channel) [FA, Heinemeyer, Herrero, 21]
 - **1L THCs** @ e^+e^- colliders [FA, Heinemeyer, Mühlleitner, tbp 24 (this talk)]
 - Tree, 1 and 2L THCs @(HL-)LHC [FA, Heinemeyer, Radchenko, Mühlleitner, 22][Bahl, Braathen, Weiglein, 22] [Heinemeyer, Mühlleitner, Radchenko, Wieglein, 23]

Two Higgs Doublet Model (2HDM)

■ SM + second Higgs doublet (CP-conserving + Z₂ symmetry)

5 physical Higgs bosons: h, H: (CP-even) A: (CP-odd) and H^{\pm}

Input parameters:

 $m_h \ (\sim 125 \text{ GeV}), \ m_H, m_A, m_{H^{\pm}}, \ \tan\beta, \cos\left(\beta - \alpha\right) \equiv c_{\beta - \alpha}, \ m_{12}^2 \equiv \bar{m}^2 s_\beta c_\beta$

• <u>Alignment limit</u>: for $c_{\beta-\alpha} = 0$ the SM interactions for h are recovered

Triple Higgs Couplings at 1 Loop

Effective potential

- 'On-shell' renormalization: 1L parameters are set equal to their tree-level values
- BSMPT [Basler, Biermann, Mühlleitner, Müller, Santos, 24]
- **Full diagramatic** approach for $\lambda_{hhh}^{(1)}$
 - On-shell conditions for masses, angles, and WFRs MS-bar for m_{12}^2 (small scale dependence)
 - The *finite momentum* effects are included!
 - anyH3 [Bahl, Braathen, Gabelmann, Weiglein, 23]
- They will capture the pure scalar 1L corrections to $e^+e^- \rightarrow hhZ$ (expected to be the main ones)

THCs: tree vs 1loop with constraints

Type	$\kappa_\lambda^{(0)}$	$\kappa^{(1)}_\lambda$	$\lambda^{(0)}_{hhH}$	$\lambda^{(1)}_{hhH}$
Ι	[-0.2, 1.2]	[0.2, 6.8]	[-1.6, 1.5]	[-2.1, 1.9]
II	[0.6, 1.0]	[0.7, 5.6]	[-1.5, 1.6]	[-1.7, 2.0]
LS	[0.5,1.0]	[0.6, 5.6]	[-1.7, 1.7]	[-2.0, 2.1]
FL	[0.7,1.0]	[0.8, 5.6]	[-1.6, 1.3]	[-1.9, 1.5]

- Scan of the parameter space
- Applied constraints to the 2HDM
 - EWPO
 - Tree-level unitarity + potential stability
 - BSM Higgs boson searches

- Properties of the SM-like Higgs boson
 - Close to the alignment!
- Flavor Observables

[ScannerS + HiggsTools + HDECAY]

κ_{λ} : tree level vs 1 loop

λ_{Γ} h					
φ, hφ	Type	$\kappa^{(0)}_{\lambda}$	$\kappa^{(1)}_\lambda$	$\lambda^{(0)}_{hhH}$	$\lambda^{(1)}_{hhH}$
ϕ	Ι	[-0.2, 1.2]	[0.2, 6.8]	[-1.6, 1.5]	[-2.1, 1.9]
ϕ h	II	[0.6, 1.0]	[0.7, 5.6]	[-1.5, 1.6]	[-1.7, 2.0]
h	LS	[0.5, 1.0]	[0.6, 5.6]	[-1.7, 1.7]	[-2.0, 2.1]
	FL	[0.7, 1.0]	[0.8, 5.6]	[-1.6, 1.3]	[-1.9, 1.5]
$\phi = H, A, {H^{\pm}}^h$			(results	from the effect	tive potential)

- Very large corrections are possible! $\lambda_{hhh}^{(1)} >> \lambda_{hhh}^{(0)}$
- h couplings to heavy Higgs bosons can be large ($\lambda_{h\phi\phi} \sim 15$) (In the SM, top-loops
 - Even at the *alignment limit* !!!

are ~ -8%)

[FA, Heinemeyer, Herrero, 21, 22]

λ_{hhH} : tree level vs 1 loop

φ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Type	$\kappa^{(0)}_\lambda$	$\kappa^{(1)}_\lambda$	$\lambda_{hhH}^{(0)}$	$\lambda_{hhH}^{(1)}$
ϕ	Ι	[-0.2, 1.2]	[0.2, 6.8]	[-1.6, 1.5]	[-2.1, 1.9]
h	II	[0.6, 1.0]	[0.7, 5.6]	[-1.5, 1.6]	[-1.7, 2.0]
φ h	LS	[0.5,1.0]	[0.6, 5.6]	[-1.7, 1.7]	[-2.0, 2.1]
$h \rightarrow h$	FL	[0.7, 1.0]	[0.8,5.6]	[-1.6, 1.3]	[-1.9, 1.5]
$\phi=H,A,H^{\pm} \stackrel{h}{}^{h}$			(results	from the effect	ive potential)

1L corrections for \(\lambda_{hhH}\) are not as significant as for \(\lambda_{hhh}\)
Still interesting results: \(\lambda_{hhH}^{(1)} \ge \lambda_{hhH}^{(0)} \simeq 0\) or change of sign in \(\lambda_{hhH}\)

Effects from THCs at $e^+e^- \rightarrow hhZ$

 e^+ e^+ A) Non-resonant diagram with $\kappa_{\lambda} \Rightarrow$ at low m_{hh} ZZB) **Resonant** *H* diagram H11 with $\lambda_{hhH} \Rightarrow$ at $m_{hh} \simeq m_H$ e A) B C) Resonant A diagram (no THC) e^+ e^+ e^+ ZZZZh h P e

In the alignment limit ($c_{\beta-\alpha}=0$)

Access to $\kappa_{\lambda}^{(1)}$

Large 1L κ_{λ} @ILC500GeV

$m_H = \bar{m} = 400 \text{ GeV},$ $10^0 \int_{-\infty}^{\infty} \kappa_{\lambda}^{(1)} = 1.00 \kappa_{\lambda}^{(1)} = 5.75$

Large 1L κ_{λ} @ILC1TeV

 $m_A = m_{H^{\pm}} = 800 \text{ GeV},$ $\tan \beta = 3, \ \cos(\beta - \alpha) = 0$

BPal, all types!

- Similar to the 500 GeV case
- All points with large scalar couplings can potentially lead to large κ_λ at 1L !!!

LCWS 2024 – Tokyo, Japan

Events [1

Access to $\lambda_{hhH}^{(1)}$

Expected events at the *H* peak

• We look at the expected **final 4***b***-jet events**:

- *b*-tagging efficiency: $\epsilon_b = 80\%$
- Acceptance ${\cal A}$ after the detection cuts:

$$\bar{N}_{4bZ} = N_{4bZ} \times \mathcal{A} \times \epsilon_b$$

 $p_T^Z > 20 \text{ GeV}, \ p_T^b > 20 \text{ GeV}, |\eta_b| < 2, \ \Delta R_{bb} > 0.4$

- Smearing of the theoretical prediction for the m_{hh} distributions due to finite detector resolution
 - We consider 2% and 5% smearing
- Size of the bin:
 - Bins with at least 2 events inside the kinematically allowed region

Similar (but improved) analysis to

[FA, Heinemeyer, Herrero, 21] [FA, Heinemeyer, Radchenko, Mühlleitner, 22]

'Sensitivity' to the H resonance

• **Theoretical 'estimator'** to the possible access to the *H* resonance (and to λ_{hhH}) from the resonance (R) and the 'continuum' (C) (i.e. $\lambda_{hhH} = 0$) events:

$$R = \sqrt{2\left((s+b)\log\left(1+\frac{s}{b}\right) - s\right)}$$

$$s = \sum_{i} \left| \bar{N}_{i,4bZ}^{R} - \bar{N}_{i,4bZ}^{C} \right|$$
$$b = \sum_{i} \bar{N}_{i,4bZ}^{C}$$

- Three methods to compute the estimator *R*:
 - 'Signal region': consider bins where C and R separated by 2 or 3 std
 - Compute R for all bins and sum in quadrature

Similar (but improved) analysis to

[FA, Heinemeyer, Herrero,21] [FA, Heinemeyer, Radchenko, Mühlleitner, 22]

Large 1L λ_{hhH} @ILC500GeV (no smear)

- Large effect from $\kappa_{\lambda}^{(1)}$
- For this point $\lambda_{hhH}^{(0)} \sim 0 \ll \lambda_{hhH}^{(1)}$
 - \Rightarrow the *H* resonance is more prominent

BPlahhH-1, type I

 $m_{H} = \bar{m} = 300 \text{ GeV},$

 $m_A = m_{H^{\pm}} = 650 \text{ GeV},$

 $\tan \beta = 12, \ \cos(\beta - \alpha) = 0.12$

Large 1L λ_{hhH} @ILC500 + 2% smear

Large 1L λ_{hhH} @ILC500 + 5% smear

LCWS 2024 - Tokyo, Japan

LCWS 2024 – Tokyo, Japan

Results for *R* :

- Smearing decreases the value of R
 - Still optimistic results: the κ_{λ} enhancement helps
- Challenging access resonance *H* peaks and dip-peak/peak-dip structures
- Still a full experimental analysis is needed!

Point	\sqrt{s}	Smearing	Bin size	$\# bins_{2\sigma}$	$\# \text{bins}_{3\sigma}$	$R_{2\sigma}$	$R_{3\sigma}$	$R_{\rm sum}$
BPlahhH-1	500	0%	5.3	2	1	11.5	12.5	12.9
BPlahhH-1	500	2%	6.0	3	1	9.5	10.5	11.2
BPlahhH-1	500	5%	6.1	4	3	8.1	8.0	8.6
BPlahhH-1	500	10%	5.3	5	3	6.0	5.1	6.6
BPlahhH-1	500	15%	5.1	4	0	4.1	-	5.7
BPlahhH-2	500	0%	8.1	2	2	10.5	10.5	10.6
BPlahhH-2	500	2%	7.6	2	2	10.6	10.6	11.0
BPlahhH-2	500	5%	9.0	4	2	8.2	8.3	8.9
BPlahhH-2	500	10%	9.0	5	4	6.9	6.7	7.2
BPlahhH-2	500	15%	8.7	6	3	5.9	4.7	6.4
BPlahhH-3	500	0%	9.0	2	1	3.4	2.8	4.5
BPlahhH-3	500	2%	9.2	1	1	2.6	2.6	4.4
BPlahhH-3	500	5%	9.4	2	0	2.9	-	4.1
BPlahhH-3	500	10%	10.4	1	0	1.8	-	3.5
BPlahhH-3	500	15%	10.7	0	0	-	-	3.1
BPsign	500	0%	4.9	1	1	5.7	5.7	5.9
BPsign	500	2%	5.3	1	1	3.6	3.6	4.1
BPsign	500	5%	4.9	0	0	-	-	3.0
BPsign	500	10%	4.8	0	0	-	-	2.2
BPsign	500	15%	3.9	0	0	-	-	1.8
BPext	500	0%	4.9	2	2	12.0	12.0	12.6
BPext	500	2%	4.9	2	2	11.7	11.7	11.9
BPext	500	5%	4.9	4	4	9.6	9.6	10.0
BPext	500	10%	4.8	7	5	8.2	7.6	8.8
BPext	500	15%	3.9	10	1	7.1	2.6	8.1

Summary & Conclusions

- Analysis of the 1L corrected triple Higgs couplings κ_{λ} and λ_{hhH} , and their impact in double Higgs production at e^+e^- colliders in the 2HDM, specifically $e^+e^- \rightarrow hhZ$ at ILC
- **1L corrections to** κ_{λ} can be very large, even in the alignment limit !!!
 - Very distinct prediction even for a very SM-like Higgs boson!
 - No relevant effects from finite momentum
- **1L corrected** λ_{hhH} **can lead to interesting pheno!** Access via the *H* resonance peak
 - Analysis of the final 4b-jet events + smearing + bin size: access to the resonance peak may be challenging (but an experimental analysis is needed)
 - Resolution in the m_{hh} distributions will be crucial

Thanks for your attention! :)

Back up

XS vs κ_{λ} in the SM at LHC

XS vs κ_{λ} in the SM at e^+e^- colliders

[Di Vita, Durieux, Grojean, Gu, Liu, Panico, Riembau, Vantalon, 18]

e⁺e⁻ → Zhh

 $e^+e^- \rightarrow v \overline{v}hh$

$\kappa_{\lambda} \neq 1$ at HL-LHC and e^+e^- colliders

Main corrections to κ_{λ}

[Kanemura, Kiyoura, Okada, Senaha, Yuan, 02]

$$\kappa_{\lambda}^{(1)} \equiv \frac{\lambda_{hhh}^{(1)}}{\lambda_{\rm SM}^{(0)}} \simeq 1 + \sum_{\phi=H,A,H^{\pm}} \frac{m_{\phi}^4}{12\pi^2 m_h^2 v^2} \left(1 - \frac{\bar{m}^2}{m_{\phi}^2}\right)^3$$

$$\lambda_{\rm SM}^{(1)} \simeq \lambda_{\rm SM}^{(0)} \left(1 - \frac{m_t^4}{\pi^2 m_h^2 v^2} \right) \qquad \qquad \lambda_{\rm SM}^{(0)} = \frac{2m_h^2}{v^2} \simeq 0.13$$

Results for κ_{λ}

Results for λ_{hhH}

$\tan \beta = 3, \ \cos(\beta - \alpha) = 0 \qquad \qquad \underbrace{\underbrace{\mathfrak{C}}}_{\mathfrak{S}} 5.70 - \underbrace{1}$

• Large $\kappa_{\lambda}^{(1)}$ due to large $\lambda_{hAA}^{(0)}$ and $\lambda_{hH^+H^-}^{(0)}$

BPal, all types!

 $m_H = \bar{m} = 400 \text{ GeV}.$

 $m_A = m_{H^{\pm}} = 800 \text{ GeV},$

- Good agreement between effective potential and diagramatic computation
 - Momentum dependence more important for large momentum

LCWS 2024 - Tokyo, Japan

Example for large κ_{λ} at 1 loop

Relative difference w/ and wo/ p

BPal, all types! $m_H = \bar{m} = 400 \text{ GeV},$ $m_A = m_{H^{\pm}} = 800 \text{ GeV},$ $\tan \beta = 3, \cos(\beta - \alpha) = 0$

Results for *R* @1TeV:

Point	\sqrt{s}	Smearing	Bin size	$\# bins_{2\sigma}$	$\# \mathrm{bins}_{3\sigma}$	$R_{2\sigma}$	$R_{3\sigma}$	$R_{\rm sum}$
BPlahhH-1	1000	0%	12.4	1	1	11.5	11.5	11.6
BPlahhH-1	1000	2%	14.2	1	1	11.0	11.0	11.1
BPlahhH-1	1000	5%	14.4	2	2	8.2	8.2	8.8
BPlahhH-1	1000	10%	15.4	2	2	6.9	6.9	7.3
BPlahhH-1	1000	15%	15.4	4	2	6.1	5.4	6.4
BPlahhH-2	1000	0%	22.6	1	1	17.7	17.7	17.8
BPlahhH-2	1000	2%	22.3	1	1	17.7	17.7	17.8
BPlahhH-2	1000	5%	19.0	2	2	16.0	16.0	16.1
BPlahhH-2	1000	10%	19.2	4	4	13.6	13.6	14.5
BPlahhH-2	1000	15%	20.8	5	4	12.4	12.6	13.2
BPlahhH-3	1000	0%	32.1	1	1	3.8	3.8	4.2
BPlahhH-3	1000	2%	32.1	1	1	3.7	3.7	4.1
BPlahhH-3	1000	5%	29.9	1	1	3.7	3.7	4.4
BPlahhH-3	1000	10%	29.9	2	1	3.5	3.0	3.8
BPlahhH-3	1000	15%	26.7	2	0	3.0	-	3.5
BPsign	1000	0%	11.6	1	1	6.7	6.7	6.8
BPsign	1000	2%	12.4	1	1	6.1	6.1	6.2
BPsign	1000	5%	14.2	2	1	4.3	3.5	4.5
BPsign	1000	10%	14.9	2	0	3.2	-	3.5
BPsign	1000	15%	14.4	0	0	-	-	3.0

BPlahhH-1 @ILC 500GeV

BPsign @ILC 500GeV

BPsign @ILC 1TeV

2HDM Yukawa couplings

$$\mathcal{L}_{\text{Yukawa}} \supset -\sum_{f=u,d,l} \frac{m_f}{v} \left[\xi_f^h \bar{f} fh + \xi_f^H \bar{f} fH + \xi_f^A \bar{f} \gamma_5 fA \right]$$
$$-\frac{\sqrt{2}}{v} \left[\bar{u} \left(\xi_d V_{\text{CKM}} m_d P_R - \xi_u m_u V_{\text{CKM}} P_L \right) dH^+ + \xi_l \bar{\nu} m_l P_R lH^+ + \text{h.c.} \right]$$

	Type I	Type II	Type III	Type IV
$-\xi_u$	\coteta	\coteta	\coteta	\coteta
ξ_d	\coteta	$-\tan\beta$	$-\taneta$	\coteta
ξ_l	\coteta	$-\tan\beta$	\coteta	$-\taneta$

with
$$\xi_{f}^{h} = s_{\beta-\alpha} + \xi_{f}c_{\beta-\alpha}, \xi_{f}^{H} = c_{\beta-\alpha} - \xi_{f}s_{\beta-\alpha}, \xi_{u}^{A} = -i\xi_{u}, \xi_{d,l}^{A} = i\xi_{d,l}$$

Great access to λ_{hhH} @CLIC 3TeV !

- Estimated "sensitivity" to λ_{hhH} from the expected final 4b jet events at the H peak:
 - Overall, larger "sensitivity" to \(\lambda_{hhH}\) at VBF channel at @3TeV

Also good
 "sensitivity" if m_H is very low

