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Strongly established with interesting shortcomings

Over the decades experiments

and every missing pieces
Verified the facts that
they belong to this family

have found each

Finally at the Large Hadron collider
Higgs has been observed

Its properties must be verified

Few of the very interesting anomalies :
Tiny neutrino mass and flavor mixings
Relic abundance of dark matter . . .

H

SM can not explain them2

Introduction



Neutrino conncetion
Scientists build partcile acclerators to explore high energy

scale to explore new phenomena after the subatomic collisions .

Highly intense beams from accelerators are used to
to investigate the ultra rare processes of nature .

Astrophysicists use the cosmos as the laboratory
to investigate the fundamental laws of physics from a complementary
point of view of particle accelerator .

Cosmic frontier :

Intensity frontier :

Energy frontier :

3

Different frontiers



3 generations of 
SM singlet right handed  
neutrinos (anomaly free)
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Table 1. The particle content of the model including the three generations of the right-handed
neutrinos (N i

R, i = 1, 2, 3) and a new scalar field (�).

The Yukawa sector of the model can be written in a gauge invariant way as
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where H̃ ⌘ i⌧
2
H

⇤ and C is the charge conjugate. Due to the gauge invariance the Yukawa

interactions impose
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Further more using Eq. 2.1 the solutions to these conditions are listed in Table 1. Finally

we obtain that the charges of the particles are controlled by the two parameters, xH

and x� only. Hence we conclude that the U(1)X gauge group can be defined as a linear
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Dirac and Majorana Yukawa terms. Without the loss of generality we use a diagonal basis

for the Majorana Yukawa coupling. After the breaking of theU(1)X and the electroweak
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Dirac masses are generated:

MZ0 = g
0
r
4v2� +

1

4
x
2
H
v2 ' 2g0v�,

MN↵ =
Y

↵

Np
2
v�,

M
↵�

D
=

Y
↵�

Dp
2
vSM, (2.4)

– 3 –

Charges before  
the anomaly 
cancellations

Charges after 
Imposing the  

anomaly cancellations

mZ′ 
= 2 gXvΦ

xH, xΦ will appear
the coupling with Z′ 
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group, SU(3)c⇥SU(2)L⇥U(1)Y⇥U(1)X , where U(1)X is realized as a linear combination of the
SM U(1)Y and U(1)B�L symmetry (the so-called non-exotic U(1) extension of the SM [21]).
The particle content of the model is listed in Table 1. The structure of the model is the same
as the minimal B � L model except for the U(1)X charge assignment. In addition to the SM
particle content, this model includes three generations of RHNs required for the cancellation
of the gauge and the mixed-gravitational anomalies, a new Higgs field (�) which breaks the
U(1)X gauge symmetry, and a U(1)X gauge boson (Z 0). The U(1)X charges are defined in
terms of two real parameters xH and x�, which are the U(1)X charges associated with H and
�, respectively. In this model x� always appears as a product with the U(1)X gauge coupling
and is not an independent free parameter, which we fix to be x� = 1 throughout this letter.
Hence, U(1)X charges of the particles are defined by a single free parameter xH . Note that this
model is identical to the minimal B � L model in the limit of xH = 0.
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where the first and second terms are the Dirac and Majorana Yukawa couplings. Here we
use a diagonal basis for the Majorana Yukawa coupling without loss of generality. After the
U(1)X and the EW symmetry breakings, U(1)X gauge boson mass, the Majorana masses for
the RHNs, and neutrino Dirac masses are generated:
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where gX is the U(1)X gauge coupling, v� is the � VEV, vh = 246 GeV is the SM Higgs VEV,
and we have used the LEP constraint [23, 24] v�2

� vh2.
Let us now consider the RHN production via Z 0 decay. The Z 0 boson partial decay widths

into a pair of SM chiral fermions (fL) and a pair of the Majorana RHNs, respectively, are given
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Due to the nonzero U(1)X charges the Z 0 boson interacts with the particles in the same way

as it does in the B�L scenario [22, 25, 29, 34, 39–44], however, the CV and CA components

of the interactions between the Z
0 and the other particles in the model will depend upon

the xH and x� parameters. As we have already used x� = 1, the corresponding partial
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the model under the U(1)X and B�L frameworks respectively in the UFO [45] format,

we study the pp ! Z
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+
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� for ` = e, µ process where the U(1)X coupling g

0 is

involved. Validating our analysis with the observed CMS [9] and ATLAS [10] bounds of

heavy resonance production under the SSM scenario [46], we recast the bounds on the g
0

for the U(1)X (xH = �1.2, x� = 1) and B�L (xH = 0, x� = 1) scenarios respectively.

The corresponding bounds are given in Fig. 1. We finally use these bounds for the further

analysis of the heavy neutrino production from Z
0 in our work. A diagram showing sterile

neutrino production and decay at the LHC considered can be seen in Figure 2. The

production cross-section of the heavy neutrino pair and the decay can be seen in Figure 3.

3 LHC sensitivity with displaced vertex searches (initial part of this

section has to be modified later)

For our study, we produce two UFO [45] models, based on the B�Lmodel in [8]. We adapt

it so that the light-heavy neutrino mixing and the sterile neutrino masses are treated as
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U(1)X  breaking

Seesaw mechnism4

Dobrescu, Fox; Cox, Han, Yanagida;
AD, Dev, OkadaChiang, Cottin, AD, Mandal; AD, Takahashi, Oda, Okada

AD, Okada, Raut;

xH = 0, xΦ = 1
B − L case

Particle content



respectively to generate the light neutrino mass though the seesaw mechanism. The neutrino

mass mixing can be written as
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motivation. Therefore we are not investigating the properties of the light and heavy neutrinos

in this article. The mass of the Z 0 and the U(1)X gauge coupling are constrained by the

previous studies of LEP [120], Tevatron [121] and LHC [122]. These studies imply that a

bound MZ0/g0 & 6.9 TeV at 95% CL for the B�L case assuming v2
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� v2.

Due to the presence of the general U(1)X charges, the Z 0 boson interacts with the fermions
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Limits on the model parameters Considering the limit MZ′ > > s and appling effective theory we find the limits on
MZ′ 

g′ using LEP − II (1302.3415) and (prospective) ILC (1908.11299) :

Shows limits on MZ′ 
vs g′ for

LEP − II, ILC250, ILC500 and ILC1000

FIG. 2. Total decay width of Z 0 as a function of xH (upper left), total decay width of Z 0 as a

function of MZ0 (upper right) and the branching ratio of Z 0 (bottom) into the single generation

charged fermions as a function of xH for MZ0 = 7.5 TeV. In the first two cases we normalize the

total decay width by g02. In this analysis we fix x� = 1.

LHC considering �

m
= 3%. We calculate the bound on the U(1)X coupling g0 using

g0 =

s

g2
Model

⇣�Obs.

ATLAS

�Model

⌘
(15)

where gModel is the coupling considered to calculate �Model for di↵erent xH .

To estimate the bounds on g0 for di↵erent MZ0 , now we consider the latest CMS result

[91] where dilepton final state is considered. The electrons are considered as the final state

at 137 fb�1 and the muons are considered at 140 fb�1. In this analysis CMS considered the

ratio R� of the pp ! Z 0+X ! 2`+X to pp ! Z+X ! 2`+X. Taking R� for the electron

and muon final states and calculating pp ! Z +X ! 2`+X for 60 GeV< m`` < 120 GeV

we obtain the Z 0 production cross section in the dilepton mode for the SSM scenario. Hence

using Eq. 15 we calculate the bounds on the g0 vs MZ0 plane replacing the observed ATLAS

cross section with the observed CMS cross section using RObs

�
⇤ �(pp ! Z +X ! 2`+X).

10

Limits on MZ′ 
and g′ can also be obtained from dilepton and dijet searches at the LHC

Indicates a large VEV scale can be probed
from LEP − II to ILC1000 via ILC250 and ILC500

from [137]. Following [127, 138] we calculate the Z 0 exchange matrix element for our process

(g0)2

MZ0
2
� s

[e�µ(x`
0PL + xe

0PR)e][f�µ(xfL
PL + xfR

PR)f ] (17)

where x`
0 and xe

0 are the U(1)X charges of eL and eR which can be found in Tab. II. Similarly

xfL
and xfR

are the U(1)X charges of fL and fR. Matching Eqs. 16 and 17 we find the bounds

as

M2

Z0 � s �
g02

4⇡
|xeA

xfB
|(⇤f±

AB
)2 (18)

taking the case M2

Z0 >> s where
p
s is the LEP-II center of mass energy (209 GeV), we

calculate the bounds on in the g0 �MZ0 plane for di↵erent xH with A,B = L,R. The limits

from the dilepton, dijet, LEP and ATLAS are shown in Figs. 4 for xH  0 and in Fig. 5 for

xH > 0. Following [139, 140] and using Eqs. 16 and 18 we estimate the bounds on MZ0/g0

as a function of xH for the LEP-II using the limits on the composite scale from Tab. III in

Fig. 3 which is represented by the blue solid line and the gray shaded region is ruled out the

LEP-II. Similarly we estimate the prospective reach at the ILC with
p
s = 250 GeV, 500

GeV and 1 TeV by red dotted, purple dashed and green dot-dashed lines. The corresponding

prospective limits on the composite scales are shown in Tab. IV.

Model ⇤�
`+`� (TeV) ⇤+

`+`�(TeV) ⇤�
qq
(TeV) ⇤+

qq
(TeV)

LL 11.8 13.8 4.2 7.2

RR 11.3 13.2 6.3 4.3

LR 10.0 13.5 5.7 4.9

RL 10.0 13.5 8.4 10.8

VV 20.0 24.6 9.4 5.8

AA 18.1 17.8 6.9 10.7

TABLE III. The 95% CL on the scale for constructive (⇤+) and destructive interferences (⇤�)

with the SM, for the contact interaction models from LEP-II [137]. We consider the universal

limits (strongest limits) on the dilepton (`+`�) and diquark (qq) productions from e�e+ ! ff .

Finally we discuss about the prospective limits on g0 as a function of MZ0 could be

obtained from the future e�e+ collider. We consider a
p
s = 250 GeV, 500 GeV and 1 TeV

e�e+ collider. We find the limits MZ0/g0 > 7.0 TeV, 48.24 TeV, 81.6 TeV and 137.2 TeV at
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TABLE II. Particle content of the minimal U(1)X model for di↵erent values of xH =�2, �1, �0.5,

0, 0.5, 1 and 2 respectively and x� = 1 where i represents the family index for three generations

of the fermions. Here xH = �2 and 0 are the U(1)R and the B�L cases respectively.

The corresponding bounds can be found in Figs. 4 and 5 for xH  0 and xH > 0 respectively.

We show the bounds on the g0-MZ0 plane for 1 TeV  MZ0 comparing with the dilepton

searches from ATLAS [90], ATLAS-technical design report (TDR) [134] and CMS [91]. We

also calculate the bounds comparing with the dijet searches from the ATLAS [135] and CMS

[136] with 58% and 70% acceptance respectively using Eq. 15. The bounds for xH  0 are

shown in Fig. 4 and those for xH > 0 are shown in Fig. 5.

In this analysis we have calculated the limits from LEP considering MZ0 greater than the

center of mass energy of LEP-II. The LEP electroweak working group has parametrized the

interactions as [126, 137]

±4⇡

(1 + �ef )(⇤
f±
AB

)2
(e�µPAe)(f�µPBf) (16)

where A,B = L,R for the chirality, �ef = 1, 0 for f = e, f 6= e respectively which can

constrain the high mass e↵ect beyond the SM for s

M
2
Z0

<< 1. The quantities ⇤f±
AB

are taken
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Matching the above equations we obtain
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FIG. 9. The total production cross section (left panel) and the deviation of form the SM (right

panel) as the function of
p
s with di↵erent polarizations of the electron and the positron for the

process e�e+ ! µ�µ+ for M 0
Z
= 7.5 TeV.

(middle panel) and 7.5 TeV (right panel). We study three di↵erent charged fermions in

Fig. 15 like muon (top panel), bottom quark (middle panel) and top quark (bottom panel)

respectively. The SM and BSM propagators are same except for the introduction of Z 0

in the BSM propagator. The e↵ect of Z 0 occurs in s|qXY
| through the interference when

MZ0 �
p
s. A resonance occurs at

p
s = MZ0 . Due to the bounds on g0 vs MZ0 from the

LHC and LEP-II we find that g0 for MZ0 = 5 TeV is strongly constrained leading to sharp
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e−e+ → μ+μ− MZ′ 
= 7.5 TeV

Deviations in total cross sections from SM is more than 100 % for xH ≥ 1 for s = 3 TeV . For s < 3TeV the deviation is also sizable .
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Differenial and integarted Left − Right Asymmetry (e−e+ → μ−μ+) : 𝒜LR
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FIG. 41. The integrated left-right asymmetry for the process e�e+ ! ff as a function of the

center of mass energy for MZ0 = 7.5 TeV. The contribution from the SM has been represented by

the black solid line.

=
2
p
N1N2

(N1 +N2)
�p

N1 �
p
N2

�ALR, (68)

where N1 = Lint �(Pe� = �P�, Pe+ = �P+) and N2 = Lint �(Pe� = +P�, Pe+ = +P+) are

the numbers of the events.

The production cross section of the Bhabha scattering for the SM process has been

compared with the U(1)X process in Fig. 53 where the SM shows the peak at the Z boson

mass and the contribution from the U(1)X scenario shows peaks at the Z and Z 0 boson

masses. The Z 0 mediated process has interference with the Z and � mediated processes. As

a benchmark we consider MZ0 = 7.5 TeV, g0 = 0.4 and xH = �2. We consider unpolarized

initial states.

The total production cross sections of the e�e+ final state for the three choices of the

polarization states and di↵erent xH with MZ0 = 7.5 TeV have been shown in the left column

of the Fig. 54 where as the corresponding deviations from the SM production process are
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FIG. 33. The di↵erential left-right asymmetry for the process e�e+ ! µ�µ+ as a function of cos ✓

for MZ0 = 7.5 TeV. The contribution from the SM has been represented by the black solid line.

and those for the t channel process are

qt(s, ✓)
LL =

e2

t
+

g2
L

t�M2

Z
+ iMZ�Z

+
g0
L

2

t�M2

Z0 + iMZ0�Z0

qt(s, ✓)
RR =

e2

t
+

g2
R

t�M2

Z
+ iMZ�Z

+
g0
R

2

t�M2

Z0 + iMZ0�Z0

qt(s, ✓)
LR = qt(s, ✓)

RL =
e2

t
+

gLgR
t�M2

Z
+ iMZ�Z

+
g0
L
g0
R

t�M2

Z0 + iMZ0�Z0
(56)

respectively. In Eqs. 55 and 56 gL, gR are the left and right handed couplings of the electron

with the Z boson, g0
L
, g0

R
are the left and right handed couplings of the electron with the Z 0

boson, e =
p
4⇡↵ and ↵ = 1

137.035
[166]. The first term reflects the photon mediated (QED),

second term reflects the Z mediated and the third term reflects the Z 0 mediated processes

respectively in Eqs. 55 and 56. Hence we define the following quantities

s|qLL| = s|qs(s)
LL + qt(s, ✓)

LL
|

s|qLR| = s|qs(s)
LR + qt(s, ✓)

LR
|

s|qRL
| = s|qs(s)

RL + qt(s, ✓)
RL

|

s|qRR
| = s|qs(s)

RR + qt(s, ✓)
RR

| (57)
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FIG. 37. The deviation in the di↵erential left-right asymmetry for the process e�e+ ! µ�µ+

as a function of cos ✓ for MZ0 = 7.5 TeV. The theoretically estimated statistical error has been

represented by the gray shaded band. The integrated luminosity has been considered as Lint = 1

ab�1.

FIG. 38. The deviation in the di↵erential left-right asymmetry for the process e�e+ ! bb as

a function of cos ✓ for MZ0 = 7.5 TeV. The theoretically estimated statistical error has been

represented by the gray shaded band. The integrated luminosity has been considered as Lint = 1

ab�1.

52

MZ′ 
= 7.5 TeV

and ✓max depends on the experimental set up. For mf ⌧
p
s and cos ✓max = 1 Eq. 29 is

reduced to

AFB(Pe� , Pe+) '
3

4

B1 � B2

B1 +B2

,

(31)

where the coupling dependent quantities B1 and B2 can be defined as

B1 = (1 + Pe↵)|q
eRfR |

2 + (1� Pe↵)|q
eLfL |

2

B2 = (1 + Pe↵)|q
eRfL |

2 + (1� Pe↵)|q
eLfR |

2 (32)

The statistical error of the AFB can be denoted by the quantity �AFB and it is defined

as

�AFB = 2

p
n1n2

�p
n1 +

p
n2

�

(n1 + n2)2
=

2
p
n1n2

(n1 + n2)
�p

n1 �
p
n2

� AFB (33)

We define (n1, n2) = (NF , NB) where NF (B) = Lint�F (B)(Pe� , Pe+) is the number of events

in the forward (backward) direction. The amount of the deviation from the SM results can

be defined as

�AFB
=

A
U(1)X

FB

ASM

FB

� 1. (34)

C. Left-right asymmetry (ALR)

The left-right (LR) asymmetry (ALR) is another important aspect which can be tested

at the e�e+ collider [142, 143, 145–147]. The di↵erential ALR can be given by

ALR(cos ✓) =
d�LR
d cos ✓

(cos ✓)� d�RL
d cos ✓

(cos ✓)
d�LR
d cos ✓

(cos ✓) + d�RL
d cos ✓

(cos ✓)
(35)

For mf ⌧
p
s, the Eq. 35 reduces to

ALR(cos ✓) '
(1 + cos ✓)2

�
|qeLfL |2 � |qeRfR |

2
�
+ (1� cos ✓)2

�
|qeLfR |2 � |qeRfL |

2
�

(1 + cos ✓)2 (|qeLfL |2 + |qeRfR |2) + (1� cos ✓)2 (|qeLfR |2 + |qeRfL |2)
. (36)

The observable di↵erential ALR in terms of the polarized incoming electron and positron

can be written as

ALR(Pe� , Pe+ , cos ✓) =
d�

d cos ✓
(Pe� , Pe+ , cos ✓)�

d�

d cos ✓
(�Pe� ,�Pe+ , cos ✓)

d�

d cos ✓
(Pe� , Pe+ , cos ✓) +

d�

d cos ✓
(�Pe� ,�Pe+ , cos ✓)

(37)
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for Pe� < 0 and |Pe� | > |Pe+ |. Hence we find that Eq. 37 is related to Eq. 36 by

ALR(cos ✓) =
1

Pe↵

ALR(Pe� , Pe+ , cos ✓) . (38)

Finally we calculate the integrated left-right asymmetry after the integration over the scat-

tering angle as

ALR =
�LR

� �RL

�LR + �RL
. (39)

In terms of the couplings of the fermions with the Vi, we write Eq. 39 as

ALR =

⇣
1 + 1

3
�2

⌘h�
|qeLfL |2 + |qeLfR |2

�
�
�
|qeRfR |

2 + |qeRfL |
2
�i

+ 8
m

2
f

s

h
Re(qeLfLqeLfR

⇤
)�Re(qeRfRqeRfL

⇤
)
i

⇣
1 + 1

3
�2

⌘h�
|qeLfL |2 + |qeLfR |2

�
+
�
|qeRfR |

2 + |qeRfL |
2
�i

+ 8
m

2
f

s

h
Re(qeLfLqeLfR

⇤
) +Re(qeRfRqeRfL

⇤
)
i

(40)

In the limit mf ⌧
p
s,

ALR '
(|qeLfL |2 + |qeLfR |2)� (|qeRfR |

2 + |qeRfL |
2)

(|qeLfL |2 + |qeLfR |2) + (|qeRfR |2 + |qeRfL |2)
. (41)

The observable integrated left-right asymmetry is given by

ALR(Pe� , Pe+) =
�(Pe� , Pe+)� �(�Pe� ,�Pe+)

�(Pe� , Pe+) + �(�Pe� ,�Pe+)
(42)

for Pe� < 0 and |Pe� | > |Pe+ | and this is related to Eq.39 by

ALR =
1

Pe↵

ALR(Pe� , Pe+). (43)

The statistical error of the left-right asymmetry, �Aff̄

LR
is defined as

�ALR = 2

p
NLRNRL

�p
NLR +

p
NRL

�

(NLR +NRL)2

=
2
p
NLRNRL

(NLR +NRL)
�p

NLR �
p
NRL

�ALR, (44)

where NLR = Lint �LR and NRL = Lint �RL are the numbers of the events. The amount of

deviation from the SM in the di↵erential and integrated LR asymmetries can be characterized

from Eqs. 42 and 43 as

�ALR
(cos ✓) =

A
U(1)X

LR
(cos ✓)

ASM

LR
(cos ✓)

� 1 ,

�ALR
=

A
U(1)X

LR

ASM

LR

� 1 (45)

respectively.
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Deviation from the SM xH = 2 : 10 % for at 250 GeV
xH = 1 : 20 % for at 500 GeV
xH = − 2 : 8 % for at 500 GeV
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`Li eRi NR↵ H �

SU(2)L 2 1 1 2 1

U(1)Y �1/2 �1 0 1/2 0

U(1)X �1
2xH � x� �xH � x� �x�

1
2xH 2x�

TABLE I: The relevant part of the particle content of the general U(1)X scenario where i

and ↵ are the family indices for the three generations.

and singlet scalars respectively. Here gX is the U(1)X gauge coupling. The existence of

such a neutral BSM gauge boson will allow the interactions with the fermions of the model.

The e↵ect of the unequal U(1)X charges of the SM leptons, unlike the B�L theory, will be

manifested by their interaction with the Z
0 as

� L`

int = gX(`LQ
`

X
�
µ
Z

0
µ
`L + `RQ

eR
X
�
µ
Z

0
µ
`R) (1)

where Q
`

X
= �1

2xH � x� and Q
eR
X

= �xH � x� are the U(1)X charges of the left handed

and right handed leptons in terms of the U(1)X charges of the scalar fields. At the DUNE,

the neutrino-electron scattering can be mediated by the SM gauge bosons at the s and t

channels. Additionally a light Z 0 mediated t channel exchange will contribute to the ⌫ � e

scattering as shown in Fig. 1.

FIG. 1: The electron-neutrino scattering by the charged (1) and neutral (2) mediators.

The Z
0 vertices manifest the general U(1)X charges.

The interaction between the light neutrinos and the electrons through the light Z 0 will
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Neutrino electron scattering

explicitly manifest the e↵ect of the general U(1)X charges. For example if we fix x� = 1

with xH = �2, �1, xH = 1 and xH = �0.5 we find that there is left handed fermions,

eR, dR and qR respectively have no interaction with the Z
0. The case with xH = 0 will

produce the B�L scenario and xH = �2 is called the U(1)R scenario. We can consider the

B�L as a special case of the general U(1)X scenario when xH = 0 and x� = 1. Finally

the total ⌫ � e scattering cross section will include the corresponding interference between

the SM induced and light Z 0 mediated processes. The breaking of the U(1)X symmetry can

have another important implication in the form of generation of the Majorana mass term

of the heavy neutrinos from the interaction YN↵�NR↵
c
NR↵+H.c. which can generate the

light neutrino mass and the flavor mixing through the seesaw mechanism [7]. We consider

the ⌫ � e scattering at the DUNE near detector facility under the general U(1)X scenario.

Following the scattering processes shown in Fig. 1 we estimate the complete di↵erential

scattering cross section
d�(⌫e)

dT
with respect to the recoil kinetic energy of the outgoing

electron (T ) including the interference e↵ects. The SM cross section for ⌫ � e scattering

mediated by the W and Z bosons is given by

d�(⌫e)

dT

����
SM

=
2G2

F
me

⇡E2
⌫

(a21E
2
⌫
+ a

2
2(E⌫ � T )2 � a1 a2 meT ), (2)

where E⌫ is the energy of the incoming neutrino, GF is the Fermi constant, me is the mass

of electron, and T (0 < T <
2E2

⌫

2E⌫ +me

) is the recoil kinetic energy of the outgoing electron.

The values of a1 and a2 for various flavor of neutrinos (anti-neutrinos) are given in Table.

II.

Scattering Process a1 a2

⌫ee ! ⌫ee sin2 ✓w + 1/2 sin2 ✓w

⌫̄ee ! ⌫̄ee sin2 ✓w sin2 ✓w + 1/2

⌫�e ! ⌫�e sin2 ✓w � 1/2 sin2 ✓w

⌫̄�e ! ⌫̄�e sin2 ✓w sin2 ✓w � 1/2

TABLE II: Values of a1 and a2 in terms of Weinberg angle (✓W ) for di↵erent flavor of

neutrinos (anti-neutrinos) and � corresponds to either µ or ⌧ .

In the presence of U(1)X , the ⌫ � e scattering cross section will be modified by the

additional t channel Z 0 exchange process as

5
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SM : The interactions of the leptons with Z and W bosons

d�(
(�)
⌫↵e)

dT

����
Z0

=
(gX)4(Ql

X
)2me

4⇡E2
⌫
(2meT +m

2
Z0)2

[(2E2
⌫
� 2E⌫T + T

2)(b21 + b
2
2)± 2b1b2(2E⌫ � T )T

� meT (b
2
1 � b

2
2)], (3)

where ↵ 2 (e, µ, ⌧).

The contribution of the new interference term to ⌫ � e scattering from the Z
0 can be

written as

d�(⌫ee)

dT
|
int

=
GF (gX)2Ql

X
mep

2⇡E2
⌫
(2meT +m

2
Z0)

[2E2
⌫
(b1 + b2) + (2E2

⌫
� 2E⌫T + T

2)(b1c1 + b2c2)
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T : KE of out going electron12
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FIG. 2: Total cross section of
(�)
⌫µ � e scattering for SM and U(1).

III. EXPERIMENTAL DETAILS

Neutrino electron scattering gives us a powerful tool to probe di↵erent U(1)X model

parameters space. Various neutrino experiments could give significant constraints on U(1)X

model. The details description of the experiments are mentioned below.

DUNE ND : DUNE is an upcoming superbeam long-baseline neutrino experiment. It

will also have a near detector complex to measure the neutrino flux precisely. We consider

a 75 tons of liquid Argon near detector for our analysis. The detector will have an excellent

energy and angular resolution for the scattered electron. The predicted fluxes for neutrino

and anti-neutrino modes are shown in Fig. ??. The small amount of contaminated ⌫e (⌫̄e)

flux could produce the background for ⌫ � e scattering via the charged current (CC) in-

teraction if the hadronic activity is below the detector threshold level (⇠ 50 MeV). The

misidentified ⇡
0 could also mimic the signal produced via ⌫A ! ⌫⇡

0
A if one of the photon

is soft and also the hadronic activity is below the threshold. We consider total 7 years of

runs with equally divided both in neutrino and anti-neutrino mode.

BOREXINO : 7Be solar neutrino (⌫e) of 862 keV energy was measured by BOREXINO

collaboration [9] via the neutrino electron scattering using the liquid scintillator detectors.

The energy range of the recoiled electron is 270� 665 keV.

TEXONO : At the Kuo-Sheng Nuclear Power Station, the elastic ⌫̄e � e scattering was

8
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FIG. 6: 90% CL contour in the gX-Mz0 plane.
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MZ′ [GeV]

gX νμ : Solid, νμ : Dashed

2111.08767 (DUNE), 2206.12676 (Beam dump)
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Limits on gX − MZ′ 
plane for different charges

e± beam dump experiments :

Proton beam dump experiments :

Scattering experiments :

Orsay, NA64, KEK, E141, E137, E774

ν − cal, CHARM, Nomad

ν − e : TEXONO, BOREXINO, JSNS2, DUNE

FASER, FASER2, DUNE

Dark photon search : BaBar, LHCb, CMS Dark

ILC − BD

ν − N : CHARM − II, COHERENT, FASERν, NA64

LEP, MUonE

2206.12676, 2307.09737



Conclusions
We are looking for a scenario where which can explain
a variety of beyond the SM sceanrios .

The proposal for the generation of the tiny neutrino
mass, from the seesaw mechanism, under investigation
at the energy frontier .

The motivations of these works is to find a new particle,
a new force carrier as a part of the of the new
physics search including various BSM aspects .

Mnay aspects can be addressed in these scenarios
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which could connect three interesting frontiers of physics

Z′ 


