Design and Optimization of the CLIC FFS at 7 TeV

ENRICO MANOSPERTI ROGELIO TOMAS GARCIA ANDRII PASTUSHENKO

Table of contents

- Description of the new FFS design
- Optimization of the bending magnets
- Scan of the vertical beta function
- Length optimization
- Final doublet optimization
- Conclusions

FFS Design

- Scaling all the BDS by a factor $(7 \text{ TeV} / 3 \text{ TeV})^{1/3}$.
- Same length as the 3 TeV FFS: 768 m.
- Initial beta functions (end of Collimation): $\beta_x = 86.2 \text{ m}$, $\beta_y = 23.8 \text{ m}$.

L* [m]	6
FFS length [m]	768
Norm. emittance $\gamma \epsilon_x / \gamma \epsilon_y$ [nm]	660/20
IP beta function β_x^*/β_y^* [mm]	9/0.12
IP beam size σ_x^*/σ_y^* [mm]	30/0.6
rms energy spread δ_p [%]	0.3

Scaling of the Bending angles

- Reduction of the FFS bending angles.
- Compensate the dispersion reduction by scaling the sextupole strengths at each steps by a factor $\left(\frac{\Delta\theta}{\theta}\right)^{-1}$

$$\mathcal{L}_{tot} = 10 \cdot 10^{34} \text{cm}^{-2} \text{s}^{-1}$$
 for $\Delta \theta / \theta = -65\%$

Beam size optimization

Optimization of the beam size at the IP by varying:

- 1. only the magnet strengths (blue).
- 2. the magnet strengths and the octupoles and decapoles positions (red).

ENRICO MANOSPERTI

 eta_y^* Scan

- Scan of β_y^* in step of 0.1 mm
- No sextupoles optimization

Best $\beta_y^* = 0.14 \text{ mm}$

10/07/2024

Length scaling – best QF1-QD0 distance

30.5

30.4

30.3 30.2

30.1

30.0

- Increase the length of the FFS to reduce the magnetic field into the dipoles that leads to a decrease in an energy loss by synchrotron radiation.
- FFS length increased in steps of 10%.
- Optimization of the distance between QD0 and QF1 to minimize the horizontal chromaticity.

Length scaling – dispersion optimization

- 1. Optimization of the beam size with Mapclass (1st iteration)
- 2. Dispersion reduction to reduce the Synchrotron Radiation effects
- 3. Optimization of the beam size with Mapclass (2nd iteration)

Best: $\Delta L_{FFS}/L_{FFS} = +20\%$ FFS length = 921 m

800

$$\mathcal{L}_{tot} = (12.23 \pm 0.04) \cdot 10^{34} cm^{-2} s^{-1}$$

900

Fit 1st iteration

Fit 2nd iteration

Data 1st iteration

Data 2nd iteration

FFS length [m]

1000

1100

11.6

Length scaling – beam size

- At each FFS length, the beam size with Mapclass has been optimized.
- 1st, 2nd and 3rd map orders are dominant for the luminosity calculations
- Relaxing the 4th and 5th orders to minimize the lower ones.

Final doublet optimization

- Variation of QF1 and QD0 length to minimize the radiation emission due to the Oide effect.
- Length variation in steps of 5% starting from QF1
- Best scaling for QF1: +40%
- No scaling for QD0

$$\mathcal{L}_{tot} = (12.65 \pm 0.03) \cdot 10^{34} cm^{-2} s^{-1}$$

Conclusions

- A first design for the FFS at 7 TeV has been proposed.
- FFS optimized and scaled differently from all the other sections of the BDS.
- Strong radiation effects have been minimized.
- An optimization of all the elements into the line has been performed to maximize the luminosity.