Addressing technological challenges on sensor-electronics hybridization for compact silicon tungsten electromagnetic calorimeters

<u>Adrián Irles*</u>, Yan Benhammou (TAU), Dirk Zerwas (DMLab)

*AITANA group at IFIC – CSIC/UV

Introduction

Outline

- ▷ High granular silicon-ecals : what for?
- ▷SiW-ECAL challenges
- ▷Ultra Compact ECAL challenges
- ⊳Summary

High Granular Calorimetry R&D: what for?

- Higgs Factories Particle FLOW calorimeters
 - All projects (linear/circular) consider Particle Flow detector options
- Requires high granular and compact sandwich calorimeters (i.e. ECAL silicon + tungsten)

LUXE

• Fully embedded electronics & minimal moliere radius

Strong-Field QED experiments (LUXE)

- Excitement and ambitious program to study **SFQED** in high detail \rightarrow **uncharted territory**
- From the point if view of <u>Higgs Factories</u>: also a <u>stepping stone on detector R&D program</u>

▷Dark Photon, ALPs Experiments

• LUXE-NPOD, ...

SiW ECAL Technological requirements

IFIC INSTITUT DE FÍSICA C O R PUSCULAR

Sandwich calorimeters – High Granularity –

- Particle Flow, Luminosity measurements, Energy Flow, shower overlapping
- ▷Tungsten as absorber material
 - Narrow showers
 - Assures compact design
- ▷Silicon as active material
 - Support compact designs
 - Allows pixelisation → good position resolution
 - Robust technology
 - Excellent signal/noise ratio

Requirements: highly integrated

e.g. SKIROC (for SiW Ecal)

Barrel

⊳O(10⁴) slabs

○O(10⁵) ASUs (PCB+wafer+ASIC+DigReadout)

▷O(10⁶⁻⁷) ASICS

⊳O(10⁸) cells

• 2000 m² of Si

▷ 130 T of tungsten Cell size of 5x5 mm \rightarrow all cells are self triggered + zero suppression

Size 7.5 mm x 8.7 mm, 64 channels Dual gain, autotrigger, powerpulsed (goal of 25uW / chn)

9th July 2024

Irles A.

10mm

V

SiW ECAL: the basics

IFIC INSTITUT DE FÍSICA CORPUSCULAR

- ▷Very dense PCBs
- ▷4 silicon sensors
 - PiN Diodes of 90x90mm²
 - 55x55mm² cells
- \triangleright No space for wirebonding
- ▷Glue with conductive epoxy+silver mixes
 - Low temperature curing (40-80 degrees)

Delamination observed in several modules → partial (or almost total) wafer-pcb separation with time

Prototype from Hamamatsu

SiW ECAL: PCB planarity

ISOMETRIC VIEW

Naked PCB planarity meas.

19.45	19.50	19.55	19.60	

ISOMETRIC VIEW

Same PCB after keeping it in dry storage for 10 days

19.37519.40019.42519.45019.47519.50019.52519.550

Measurements by C. Orero,

SiW ECAL: PCB planarity

Planarity measurements being doing consistently and under different storage conditions

▷Naked board PCB planarity : varies between 80-160um depending on the board

Similar planarity for boards equipped with components (less statistics)

Planarity depends on storage conditions. Systematic improvement observed.

- Global planarity improves in ~60% (50-80um)
- Local differences are larger, up to few 100um

Measurements by C. Orero

SiW ECAL hybridization / integration

Cluing training + tests ongoing

Setup in new clean installation being deployed at IFIC

SiW ECAL: double adhesive solution for hybridization

▷Keeping control on the deformation of PCB

• Wip: study of the stress forces invovled (IJCLab)

>Two solutions being explored, both still with epoxy-silver glue dots for the electrical conductivity

- Undefill glue (EPO-TEK 301-2FL) → involves second curing.
- Double tape (3M 5907-F) used as stencil/mask for adherence

C. Blanch, A.I IFIC

AR

Mechanical tests

FIC

INSTITUT DE FÍSICA C O R P U S C U L A R

Requirements: highly compact

Figure 5.13. Structure of a sensitive layer of the LumiCAL calorimeter.

Forward region (LUMICAL)

▷Ultra thin layers <1mm for minimal Moliere Radius

Not embedded electronics

▷ Higher radiation levels

Ultra Compact Calo Hybridization

▷ Material budget, thickness:

- Total bellow 1mm
- 200um CF + 320um sensor
- ~500um for fanout + HV kapton + 3 layers of glue/Adhesive

>The main challenge is to obtain a very thin layer of glue, with high repeatability

Ultra Compact Calo Hybridization

IFIC

9th July 2024 Irles A.,

INSTITUT DE FÍSICA C o r p u s c u l a r

Tooling for precise hybridization

Work in progress – design and optimization of the gluing process

- ▷ High granular silicon ECALs with embedded electronics and compact design poses several challenging on the hybridization.
- Comprehensive studies been pursued within detector R&D collaborations (DRD6) but also driven by specific projects: ILD, LUXE

Thanks

Strong-Field QED experiments

Si ECAL hybridization / integration

INSTITUT DE FÍSICA CORPUSCULAR

Common R&D Mid-term

▷ R&D Alternative solutions:

- Check what the industry is doing (smartphones, LCD screens, etc)
- → Anysotropic Conductive Films, Micropearls... (investigated also in the context of AIDAInnova & LUXE)
- Affordable for large surface sensors in rigid PCBs ??

PCBs

▷Very dense **PCBs:**

 i.e. at SiW-ECAL they are known as featuring 1024 readout channels (with digital, analogue, clock signals) in a 18x18 cm^2 board

CMS HGCAL Hexaboard

Wire bonding from PCB to silicon through holes

Wire bonding from PCB to silicon through holes

SiW-ECAL current prototype solution.

Meets industry requirements → bulky components **compromise compactness**

IFIC-Lab for ECAL hybridization

IFIC INSTITUT DE FÍSICA C O R P U S C U L A R

 \triangleright New facility and capabilities at IFIC

► Funding: CIDEGENT/ASFAE/CNS → In line with ECFA – R&D roadmap, DRD6, Future Colliders

▷ IFIC will become the hub for module hybridization R&D / production / commissioning for DRD6 Si-ECALs and for the LUXE experiment

DRD6

