Monte Carlo Simulations of an electromagnetic sampling calorimeter with semiconductor sensors

Petru-Mihai Potlog

Veta Ghenescu, Marian-Traian Ghenescu, Alina-Tania Neagu

Monte Carlo Simulations & semiconductor sensors

goal, method, analysis

- <u>Goal:</u>
 - this contribution focuses on optimizing the electromagnetic calorimeter (such as used in LUXE experiments) foreseen to achieve higher energy resolution, using a Monte Carlo approach.
- Method
 - Geant4-based simulations, study of Si and GaAs sensors response to e⁻ with energy in the range from 1 to 18 GeV
- <u>Steps:</u>
 - implement of various configurations geometries in Geant4
 - evaluate various physics lists and check their influence
 - collect quantities of interest (eg. hits position, energy deposition)
- Analysis:
 - Energy response and linearity: correlate the sensor response to the energy deposition
 - Longitudinal shower: energy deposition of electrons as a function of depth in detector
 - Energy resolution: the fractions of how much energy is deposited in the absorber and in the detector

This talk presents the overall simulations.

Monte Carlo simulations and data analysis workflow

FreeCAD, Geant4, Root

 2 experimental setups generated and exported using simple computer-aided design – FreeCAD

challenge: export to a format readable by simulation tool

- full response of the sensor and the test beam setup with high statistics is simulated with Geant4.11.06
 <u>challenge</u>: choose/construct physics list, write data to file
- *data analysis* of the sensors is performed using **ROOT** framework <u>challenge</u>: extract physical quantities matching foreseen experimental data

Monte Carlo Simulations & semiconductor sensors

Electromagnetic Sampling Calorimeters

Principles:

- a sampling calorimeter consists of alternating layers of passive absorbers and active detectors.
- typical absorbers are materials with high density, e.g.: Fe, Pb, U

Possible setups:

- Plastic scintillators
- Silicon detectors
- Noble liquid ionization chambers
- Gas detectors

Advantages:

- can optimally choose the absorber and detector material independently and according to the application.
- by choosing a very dense absorber material the calorimeters can be made very compact.
- the passive absorber material is cheap

Disadvantages:

- only part of the particles energy is deposited in the detector layers and measured
- energy resolution is worse than in homogeneous calorimeter (*sampling fluctuations*).

	Experiment	Detector	Detector thickness [mm]	Absorber material	Absorber thickness [mm]	Energy resolution (E in GeV)
	UA1	Scintillator	1.5	Pb	1.2	15%/√E
	SLD	liquid Ar	2.75	Pb	2.0	8%/√E
	DELPHI	Ar + 20% CH ₄	8	Pb	3.2	16%/√E
	ALEPH	Si	0.2	W	7.0	25%/√E
	ATLAS	liquid Ar		Pb		10%/√E ⊕ 0.7%*
	LHCb	Scintillator		Fe		10%/√E ⊕ 1.5%*

* Design values

Configurations design

Semiconductor sensors

Geant4 geometry implementation

sensors, setups, visualization

Geant4 visualization

- 1st configuration (left) consist of 20 layers of alternating 3.5 mm (1X_o) tungsten absorbers and Si/GaAs sensors.
- 2nd configuration (right) use the first 10 layers of 3.5 mm (1X_o) tungsten plates and the following 5 layers of 7.0 mm (2X_o) tungsten plates interleaved with Si/GaAs sensors.

Primary particle generation & Physics list

GPS source, G4VUserPhysicsListPhysics, G4VModularPhysicsList

Create 'diverging' beam

- when firing an accelerator based beam, the beam will have some divergence and shape
- 12 X 12 mm² collimator -> square source
- gaussian energy distribution with 0.1% spread
- 0.752 mrad divergence

- FTF_BIC
- FTFP_BERT
- FTFP_BERT_HP
- FTFP_BERT_TRV
- FTFP_BERT_ATL
- FTFP_INCLXX
- FTFP_INCLXX_HP
- FTFP_QGSP_BERT
- LBE
- NuBeam
- QGSP_BERT
- QGSP_BERT_HP
- QGSP_BIC
- QGSP_BIC_HP
- QGSP_BIC_AllHP
- QGSP_FTFP_BERT
- QGSP_INCLXX
- QGSP_INCLXX_HP
- QGS_BIC
- Shielding
- ShieldingLEND

Hits collection

7 observables

Hits versus digits

sensitiveDetector, DigitizerModule

G4VHit

• **Hits** are a "snapshot" of the physical interaction of a track (step) or an accumulation of interactions of tracks in the sensitive region of the detector, thus hits represent the "true" energy deposited in the detector

G4VDigitizerModule

• **Digits** are instead intended to be used to simulate the process of reading-out of the signal: for example "true" energy is transformed into collected charge, electronic noise can be applied together with all instrumental effects

No digitization has been applied to simulations performed for this task

Number of e-h pairs created

GaAs sensor

sensor materials

- 5 GeV mono-energetic e-
- 3.62 eV ionization energy

e-hole pairs / µm 78.45

• 4.3 eV ionization energy

Physics list used: FTFP_BERT_EMZ

Energy response

sensors, configurations, energy deposition

Liniarity

sensors, configurations, energy deposition

Longitudinal shower

10 GeV incident e-, 2 configurations

Longitudinal shower

all incident energies, 2 configurations

Energy resolution

Energy deposition per plane

Conclusions

simulations, analysis

Simulations

- define electromagnetic calorimeter configurations to be used
- construct geometries in FreeCad and import in Geant4
- define source and control via GPS commands
- define sensitive detector and construct hits collection to gather information
- collect relevant data in a Root format

INSTITUTE OF SPACE SCIENCE A subsidiary of INFLPR

Analysis

- calculate e-hole pairs for different material of sensors
- test various physics lists and their influence
- evaluate each pad energy deposition
- fit the energy deposition histograms to get the MPV
- evaluate MPV for different setup configurations
- find the longitudinal shower distribution for different configurations
- evaluate resolution of the configurations investigated

Acknowledgements

- this research was supported by the Romanian Ministry of Research, Innovation and Digitalization through Programme 5.9/Subprogramme 5.9.2 / Module FAIR-RO, coordinated by Institute of Atomic Physics contract NeuSMaL 2024;
- this research was supported by the Romanian Ministry of Research, Innovation and Digitalization under the Romanian National Core Program LAPLAS VII contract no. 30N/2023.

Thank you!