

July 10, 2024

The SiD Digital ECal Based on Monolithic Active Pixel Sensors

Jim Brau, University of Oregon

on behalf of the SiD MAPS Collaboration (M. Breidenbach, A. Dragone, A.Habib, L. Rota, M. Vassilev, C.Vernieri, J.B. et al.)

"The SiD Digital ECal Based on Monolithic Active Pixel Sensors", 10.3390/instruments6040051, Instruments, 6, 51 (2022)

0

UNIVERSITY OF OREGON

Research partially supported by the U.S. Department of Energy

SiD Digital ECal Based on MAPS

- SiD upgrade now under development with
 25 x 100 μm² (or 25 x 50/25 μm²) digital pixels
 in electromagnetic calorimeter and tracker.
 - Replacing the ILC TDR ECal design using 13 mm² analog pixel sensors.
- Heat management is critical to success.

- * How well can we measure energy and shower structure with this digital system:
 - * Compared to SiD baseline with analog measurements?
 - * Can the detailed structural measurements be used to improve measurement?
 - * Would a neural net optimization offer an improvement?
- What are the limits of transverse separation and measurement? SiD Digital ECal
 J. Brau - 10 July 2024

Large area MAPS for SiD tracker & ECal

Benefits of large-area MAPS:

- Standard CMOS foundry, low resistivity: cost abla
- Sensing element and readout electronics on same die
 - In-pixel amplification: noise ↓, power ↓
 - No need for bump-bonding: cost au
- Area > $5x20 \text{ cm}^2 \rightarrow$ enable O(1) m² modules

Several design challenges:

- Large on-die variations, mismatch
- Yield
- Stitching layout rules
- Distribution of power supply
- Distribution of global control signals/references

An example of the SiD Tracker and the ECal overall design

Goals of R&D: find solutions and explore novel design techniques

SLAC

Main specifications for Large Area MAPS development

Parameter	Value	Notes	L. Rota		JLAC
Min Threshold	140 e-	0.25*MIP with 10 µm thick	epi layer		25 x 100 µm ²
Spatial resolution	7 µm	In bend plane, based on S specs	iD tracker		ECal performance same as
Pixel size	25 x 100 µm ²	Optimized for tracking(or 2	5x50/25 µm²)		50 x 50 µm²
Chip size	5 x 20 cm ²	Requires stitching on 4 sid	es		
Chip thickness	300 µm	<200 µm for tracker. Could b EMCal to improve yield.	e 300 µm for		
Timing resolution (pixel)	~ ns	Bunch spacing: C ³ stricte 5.3->3.5 ns; ILC is 554 ns	st with		Ecal
Total lonizing Dose	100 kRads	Total lifetime dose, not a co	oncern		Tracker
Hit density / train	1000 hits / cm²				
Hits spatial distribution	Clusters	Due to jets			
Balcony size	1 mm	Only on one side, where w pads will be located.	ire-bonding	SiD Tracker and the ECa	
Power density	20 mW / cm ²	Based on SiD tracker power consumption: 400W over 6	er <1 mV 57m ² for 1%	V/cm ² duty cycle	4

Current sensor optimization in TJ180/TJ65 nm process Effort to identify US foundry on going

Layout of SLAC prototype for WP1.2 2022 shared submission on TowerSemi 65nm

Large Area MAPS - Highlights and Next Steps

Approach:

- Engaged with the scientific community to share know-how
- Focus on long-term R&D, targeting simultaneously:
 - ~ns timing resolution
 - Power consumption compatible with large area and low material budget
 - Fault-tolerant circuit strategies for wafer-scale MAPS

Highlights:

- Designed pixel architecture with binary readout optimized for linear colliders
- Submitted a small pixel matrix for fabrication on CERN WP1.2 shared run
- Architecture will allow us to evaluate technology in terms of defects and RTS Next steps:
- Evaluate performance of 1st SLAC prototype on TJ65nm (2023).
- New design combining O(ns) timing precision and low-power (2024/2025).
- Stretch Goals: design of a wafer-scale ASIC (2025/2026, design only) Engagement :
- Higgs Factory detector initiative R&D
- DRD 7.6 on common issues of power distributions compatible with stitching MAPS status @ LCWS 2024 Tuesday, 11am, Caterina Vernieri

SiD Digital ECal

J. Brau - 10 July 2024

A. Habib *et al* 2024 *JINST* **19** C04033

HCal **ECal**

- ECal module is built on first layer of HCal
- * HCal module supports
 ECal module
- Note module overlap: No gaps; service cables at ends.

i D•

Thermal Model for Heat Removal from SiD ECal

1 layer of 5 x 20 cm² MAPS sensors

- * MAPS generates $1 \mu W$ /pixel CW.
 - ~kW/m² (each sensor is 100 cm²)
- * **Power pulsing** critical for heat management
 - * ILC duty cycle ~0.5% (<10 W/m²)
 - * CLIC/C^3 <0.01% (<1 W/m²)
- What is temperature rise (ΔT) on end opposite the cold plate?

Heat conduction from ECal sensor to cold plate

- * First heat flows through 300 $\mu m~N_2$ to tungsten * $\Delta T << 1~K$
- Then heat flows thru tungsten to cold plate
 - * Tungsten absorber lengths 0.5-1.0 m
 - * Temperature rise is length dependent
- * Duty cycle .0007% (C3/CLIC) ΔT ~ 0.5 2 K
- Duty cycle .005% (ILC)
 ΔT ~ 4 16 K
 - Without power pulsing temperature blows up and needs active cooling

SiD

Ultimate Resolution (mips)

Mips(0.1 MeV) sumM2lin Events Entries 2000 140 695.6 Mean ll mips Std Dev 19.97 Resolution (%) = 2.9% Mip threshold = 0.1 MeV 100-Mean = 696.2 mlp Width = 19.1 mips 80 = 2.8% chi2/ndof = 63.4/35 = 1 10 GeV 60 10 2.8% 40 20 800 Mips 650 Mips(0.1 MeV)-hits sumM2hlin Pixels 2000 Entries 637 Mean 3% Std Dev 21.56 = 3.4% w/mips 100 aussian Fit Mean = 636.9 mlps Width = 21.0 mlps = 3.3% 10 GeV 2/ndot = 60 1/40 -60-3.3% 40 20-600 650 700 750 800 Mips/hits 550

mip counted once in a layer, when it enters sensor.

Gamma Resolution vs. Energy (B=5T)

Resolution vs. Energy (hits & mips)

Gamma Resolution vs. Energy (B=5T)

Resolution vs. Energy (hits & mips)

5.8%

3.3%

120

100

60 E 40 F

20 9000

100

60 40 20

 Counting clusters should reduce hit fluctuations

tal ECal

Y-cord

Resolution vs. Energy (hits/clusters/mips)

$S_i D$ • Mips/cluster vs. shower R 10 GeV γ s - 2000 showers

17

$10 \text{ GeV } \gamma \text{s} - 2000 \text{ showers}$

Clusters wt (radius,size) RadWt vs. mips

Apply weight to clusters:

RadWt = $a \exp(-bR) + c$

a,b,c = f(CISz)

Resolution vs. Energy (hits/clusters/mips) Gamma Resolution vs. Energy (B=5T)

TMVA Neural Net

TRAINING - 10 GeV 2000 events 2,502,000 hits 1,878,999 clusters

Store model to file model.save('modelRegression%s.h5'%Efact) model.summary()

Book methods

factory.BookMethod(dataloader, TMVA.Types.kPyKeras, 'PyKeras',

'H:!

V:VarTransform=D,G:FilenameModel=modelRegression%s.h5:FilenameTrainedModel= trainedModelRegression%s.h5:NumEpochs=20:BatchSize=32'%(Efact,Efact))

Neural net cluster weighting based on 1. Three input parameters = Cluster size,layer num,shower radius 2. Five input parameters = Add cluster length in Y and Z

Results: Energy Resolution

Energy	1	2	5	10	20	50
clusters	13.8%	10.1%	6.6%	4.9%	3.7%	2.7%
wtd clusters	12.3%	8.8%	5.7%	4.4%	3.2%	2.2%
3 par TMVA	12.6%	9.5%	6.2%	4.4%	3.4%	2.2%
5 par TMVA	12.8%	9.4%	5.9%	4.3%	3.1%	2.2%

- * Weight fits for 2, 10, 50 GeV; extrapolated for 1, 5, 20 GeV.
- NN optimized for each energy
- * 3 par = cluster size, layer, radius
- * 5 par = cluster size, layer, radius, dY, dZ

Weighted clusters already achieve performance of this neural net.

Another topic: Potential impact of high granularity on particle flow measurements

Multi-shower of SiD MAPS compared to SiD TDR $40 \text{ GeV } \pi^0 \rightarrow \text{two } 20 \text{ GeV } \gamma$'s

SiD TDR hexagonal sensors 13 mm² pixels

New SiD fine pixel sensors 25 µm x 100 µm pixels

2024

γ 's in jet / SiD baseline ECal (13mm² pixels)

- 13 mm² pixels of analog SiD ECal
- 5000x granularity with digital MAPS ECal *
- * Future MAPS integration into full SiD simulation will define scale of improvement? 27

• Conclusion

- Application of monolithic active pixel sensors (MAPS) to SiD digital ECal offers excellent performance:
 - Energy measurement
 - * Transverse energy containment & particle flow separation
- Well defined EM shower structure allows simple algorithmic optimization of energy measurement.
- * An effort led by SLAC is progressing on the needed MAPS development.
- Neural nets have been studied to improve energy measurement:
 - * They have not yet provided improvement over the "informed" algorithm.
- Passive heat management works for linear colliders given the very low duty cycle.
- * The digital ECal will add valuable performance for particle flow reconstruction.
- * Future simulation of full SiD detector with high granularity of MAPS ECal.

Extras

