Status of high granular scintillator calorimeter for future electron positron colliders

Tatsuki Murata

On behalf of the Sc-ECAL working group

May 20th, 2024

LCWS 2024

Introduction

- Future electron positron colliders
 - Precision measurements of the Higgs/EW/QCD
 - Calorimeter system requirement
 - High granularity for both ECAL and HCAL
 - 5 mm for ECAL, few cm for HCAL
 - Jet energy resolution $\sim 30\%/E$
- Particle Flow Algorithm (PFA) oriented Detector
 - SiWECAL, Sc-ECAL, DECAL, etc...

2024 International workshop on Future Linear Colliders

Sc-ECAL

- Scintillator-based Electromagnetic Calorimeter (Sc-ECAL)
 - ECAL concept based on strip-shaped plastic scintillator readout by SiPM
 - Center dimpled readout based on $5 \times 45 \times 2 \text{ mm}^3$ scintillator strip

rkshop on

scintillator strip

SiPM

- Virtual segmentation of $5 \times 5 \text{ mm}^2$ cell can be achieved by x-y configuration of strips with strip splitting algorithm (SSA)
- Ghost hit problem
 - False signal from simultaneous hits
 - Expected to be eliminated by double SiPM readout
- Double SiPM readout
 - readout by two SiPMs at strip ends

90mm (dimples at both ends)

Alveolar structure

Sc-ECAL large technological prototype

- The prototype consists of 32 absorber(W) and detection layer (EBU)
 - Total absorption layer thickness : $32 \times 3.2 \text{ mm} (\sim 23.3 X_0)$
 - Two absorber layers and two detection layers are integrated on a braced frame (super layer)
 - 16 super layers are mounted on the prototype

- ECAL Base unit (EBU) and scintillator strips + SiPM readout unit for a detection layer
 - 42 (columns) × 5 (rows) strip readouts per EBU
 - Each channel have LED for calibration of SiPM gain

Sc-ECAL large technological prototype

- All channels on each EBU can be individually readout by 6 SPIROC2E chips developed by OMEGA lab and CALICE collab.
 - High and low gain mode for wide dynamic range
 - 16 temperature sensors are implemented
- Two types of MPPC are used for SiPM on detection layer (manufactured by Hamamatsu K. K.)
 - S12571-010P, & -015P
- Last 2 layers have double SiPM readout part
 - Using 90 mm length strip instead of standard 45 mm strip

	Pixel size	# of pixel	gain
S12571-010P	10 um	10,000	1.35×10 ⁵
S12571-015P	15 um	4,489	2.3×10 ⁵

Test beam experiment

CEPC-AHCAL analysis progress is talked by Taisei

- May 17th to 31st, <u>2023</u>
- Low energy beam (1-15 GeV)
- μ⁻, π⁻, e⁻
- Collaborators
 - UTokyo, Shinshu university, USTC, IHEP, SJTU

100 GeV muon

2024 International workshop on Future Linear Colliders

Pedestal

- Pedestals were originally obtained for the channel that did not exceed threshold
 - Some channels had multi-peaks due to electronics problems in 2022 beam test
- <u>Pedestals are obtained from force-trigger-mode</u> to prevent the problem in 2023

High gain and low gain intercalibration

- SPIROC2E chip records both two gains (high gain and low gain) to cover a large dynamic range
 - Ratio of high and low gain is calculated using electron beam data
 - Many statistics at the center region of the calorimeter
- High gain ADC saturates at different value among channels
- The result is consistent with the gain difference

LED calibration

- LED data are taken during the 2023 beam test
 - SPS : 3 times (at the beginning and the middle of the beam test)
 - PS : every day
- LED data are fitted with multi-gaussians to calculate gain for each channel
- Increased the bias voltage of all channels at the beam test to compensate temperature difference from the CR test
 - The gains still decreased compared to the cosmic ray test

15 um SiPM LED data

2024 Inte	rnational	workshop o	n Future	Linear	Colliders

MIP calibration

- MIP peak value is obtained from fitting 100 GeV/c muon events' ADC distribution by Langaus function
- Threshold and SiPM voltage are optimized
- Track restriction s are used to improve fit result
- A small part of channels are not well fitted due to lack of statistics

024 International workshop on Future Linear Colliders

MIP calibration problems

- DAQ threshold might not be set to appropriate values on many channels
 - Too narrow MIP spectrum
 - Very low gaussian component in convoluted Landau and Gaussian function
 - Might be caused by low SPS gain
- MIP calculation failed on high threshold channels
 - Resulting unsuccessful energy reconstructions
- Trying to compensate by cosmic ray test result or other well-fitted channels

Detection efficiency of strips

- Definition of efficiency :
 - (# of hits which hit exist on the track fitting) / (estimated # of hit from track fitting)
- Detection efficiency of layers is calculated using track fit
 - A layer's hit strips are excluded from the track fitting
 - Efficiency of a layer is the ratio of events that have corresponding hits in the layer to all events
- Detection efficiency is fluctuating among layers
 - Same behavior with the energy distribution

0.2

5

10

15

LayerID

 $\mathbf{20}$

25

12

30

Correlation of threshold and detection efficiency

- Threshold are too high to cut lower edge of MIP spectrum
- Estimated threshold with constant fraction
 - ADC value with 1% of maximum height is assumed as threshold ^{max}
 - This method might not be true for 15 um SiPMs
 - Might be a good indicator for 10 um SiPMs with rising edge in the spectum
- Lower threshold channels have higher efficiency

MIP spectrum of a channel (15 um) Laver3 Chip5 Chn0 4239Mean 1196 Std Dev 324.4 x²/ndf 163 / 146 0.1594 97 ± 3.45 1028 ± 4.4 3.987e+04 ±6.738e+02 30.8 ± 7.0 1% of maximum Assumed as threshold

Summary and prospect

- Sci-ECAL and AHCAL combined test beam experiments are conducted at CERN
 - SPS H8 beamline in October 2022
 - SPS H2 beamline in April to May 2023
 - PS T9 beamline in this May 2023
- Collected decent statistics of data in wide energy range for electrons, pions, and muons
- Analyses of the combined beam test is ongoing
 - Preliminary calibrations are ongoing
- Some detailed analyses are also ongoing
 - shower analysis,
 - PID
 - Test beam simulation
 - Efficiency
 - etc...
- Plan
 - Geant4 MC validation
 - Sci-ECAL and AHCAL combined analysis

Thanks for CERN, CERN staff, and CALICE collaboration colleagues