LCWS2024 International Workshop on Future Linear Colliders

Development of next-generation calorimeter combining high-granularity and dual-readout calorimeter with psec-timing

Weiyuan Li^a, James Freeman^b, Corrado Gatto^c, Daniel Jeans^e, Taiki Kamiyama^a,

Kodai Matsuoka^d, Hiroyasu Ogawa^a, Wataru Ootani^a, Taikan Suehara^a, Tohru Takeshita^e

^{*a}ICEPP, The Univ. of Tokyo, ^{<i>b*}FNAL, ^{*c*}NIU, ^{*d*}KEK, ^{*e*}Dept. of Phys., Shinshu Univ.</sup>

This work was supported by U.S. – Japan Science Cooperation Program in High Energy Physics.

Outline

- Concept of next-generation calorimeter
- Sub-detector development
 - Cherenkov detector
 - Scintillation detector
- Performance study by simulation
- Summary and prospect

Concept of Next-generation Calorimeter

Calorimeter in collider experiment

We should focus on precision measurement of the Higgs sector for the next-generation collider experiments

- Most of the final state includes multiple jet
- Jet energy resolution is crucial for modern collider experiment
 - ~ 3% for broad energy scale
 - 70% of energy deposit in hadron calorimeter
 - However, energy resolution of HCAL is poor
 - \rightarrow Due to complex interaction by hadrons

Concept of next-generation calorimeter

Combine two calorimeter technology in corporation with psec-timing

Unprecedented jet energy resolution

High-granularity

Particle flow algorithm

Use best suited detector for energy measurement considering particle species

Mainly cultivated by CALICE collaboration

Dual-readout

Energy compensation of hadronic shower by scintillation and Cherenkov radiation

" event-by-event measurement of $f_{\rm em}$ "

$$S = E \cdot \left[f_{\text{em}} + \left(\frac{h}{e} \right)_{S} \left(1 - f_{\text{em}} \right) \right]$$

 $C = E \cdot \left[f_{\text{em}} + \left(\frac{h}{e} \right)_c \left(1 - f_{\text{em}} \right) \right]$

• $\left(\frac{h}{e}\right)_{s}$, $\left(\frac{h}{e}\right)_{c}$: Conversion efficiency of Non-EM signals to EM signals (independent with energy and particle type).

- E: Initial particle energy.
- $f_{\rm em}$: Energy ratio of EM component to E.
- Mainly studied by DREAM and RD52 collaboration *Fiber-based calorimeter

Independent of $f_{\rm em}$

psec-timing

Timing as additional information

- PID by TOF
- Timing cut by detected time in calorimeter
 - Pile-up reduction
 - Reject off-timing background
- Timing as additional input for PFA
 - Clustering by hit timing in calorimeter

w/o timing cut

w/ timing cut

Implementation

Sub-detector Development

- Cherenkov detector
- Scintillation detector

Requires granular readout and psec-timing

- Cherenkov radiator coupled to Gaseous photomultiplier
- Electron amplification by resistive plate chamber (RPC)
 - ✓ Fast timing
 - ✓ Simple structure \rightarrow Large area by low cost
 - ✓ Readout segmentation
- Diamond-Like Carbon as resistive electrode (DLC-RPC)
 - ✓ High-rate-capability > 1 MHz/cm²
 - DLC sputtered on polyimide = "film" electrode

- $\sigma_t = 50 60$ ps for large pulses in DLC-RPC (gap thickness 200 µm)
 - < 1 ionization electron cluster generated by single charged particle
 - Average 2.8 primary electron in a cluster
 - 80 100 ps for single primary electron generated near cathode
 - \rightarrow close situation for single photoelectron (p.e.) in Cherenkov detector
- Considering 10 p.e. for Cherenkov detector, it estimates 20 30 ps
 - 10 p.e. achieved by similar concept detector: PICOSEC (Micromegas-based)
 - RPC signal contamination and photon-feedback could affect performance

Sample waveform

First prototype constructed

Signal data taken by 5 GHz waveform digitizer

Configurations		
Radiator	MgF ₂	2.4 mm
Photocathode	Csl	18 nm
Conductive layer	Cr	3 nm
Contact layer	Al	100 nm
Resistive layer	DLC	100 nm
Active area	-	2x1 cm ²
RPC gap	Kapton Plastic Cu	200 µm
RPC gas	R134a SF ₆ C₄H ₁₀	93% 1% 6%

Successfully observed Cherenkov light signal!

de Discrete peaks of #p.e. in height(charge) spectrum = photon counting capability

👎 Low #p.e.

• Ion-backflow (IBF)?

 \rightarrow robust photocathode required

• Failure in the handling of photocathode?

Time resolution depends on #p.e.

- $126/\sqrt{\#p.e.}$ or $114/\sqrt{\#p.e.} \oplus 31.1$ ps
- 40-50 ps for 10 p.e., 30-40 ps for 20 p.e.
- RPC signal contamination (~ 50%),
 Photon-feedback (PFB)
 - \rightarrow Possible reason of discrepancy to estimated value
- Improvement planned
 - Reduce gap thickness \rightarrow mitigate RPC contamination
 - Switch to robust photocathode \rightarrow mitigate PFB

The construction technique been established

 \rightarrow Moving on to the upgrade of the detector

Scintillation detector

Granular readout but moderate number of channels

Place strip scintillator in orthogonal way and realize virtual cell

- Concept already proven in 45 x 5 mm² strip for ECAL (Virtual segmentation of 5 x 5 mm²)
- Test if it works for large size: 300 x 30 mm²
- \rightarrow See if light yield and its uniformity is sufficient

Scintillation detector

Scintillation detector

Result

- Sufficient light yield + good uniformity for both configuration
 - Non-uniformity around SiPM can be mitigated by dimple design
- Study for performance evaluation of position reconstruction using charge and time difference in a single strip bar ongoing
 *Asymmetry in Y axis to be investigated

Performance Study by Simulation

Simulation study targeting to understand the performance of combination of highgranularity and dual-readout calorimetry, adding timing information to the analysis

CALICE AHCAL as baseline design Switch half of scintillation layers to Cherenkov layers \rightarrow First step is to apply dual-readout analysis to a AHCAL design

- Single π^- injected into the calorimeter
- Energy scan from 10 GeV to 150 GeV

Weiyuan Li | LCWS2024, Tokyo

Weiyuan Li | LCWS2024, Tokyo

Discussion

→ Further study to investigate the best configuration

Prospect for the simulation

- \checkmark Investigation of better configuration for DR
- ✓ Create a framework for PFA + DR
 - Segmentation for each layer in calorimeter
 - ILD configuration as baseline
- $\checkmark~$ Add timing information to PFA

Summary and Prospect

- Development of next-generation calorimetry that combines high-granularity and dual-readout in addition of psec-timing
- R&D for sub-detectors ongoing
 - Cherenkov detector has proved its detector principle
 - Scintillation detector has shown its sufficient light yield and
- Simulation study has provided the direction of calorimeter configuration
- S and C combined system to be tested in testbeam facility to study overall performance

Thank you!

Backups

DLC-RPC Cherenkov detector

Experimental setup

Difference of signal generation process

Consider:

- Correlation of signal height and starting position of avalance
- #clusters
- #primary electrons

July 9th, 2024

July 9th, 2024

Cluster and primary electrons

#clusters

July 9th, 2024

- ⁹⁰Sr β -ray: $\gamma 1 \sim 1 \rightarrow \sim 2$ clusters / 200 μ m
- Clusters that can be grow to signal: some $10\% \rightarrow #$ cluster ~ 1
- #Primary electrons: 2.8 electrons / cluster

Detector photo

Scintillator strip

Strip and SiPM

- Scintillator
 - ELJEN EJ200, EJ232
 - 295mm×30mm×3mm
- SiPM
 - MPPC S13360-2050VE

- Optimization of the strip design.
- Checking the light yield and uniformity with position scan using Sr90 beta-ray.

Strip material candidates

Readout candidates

Experimental setup of position scan

Analysis method

 $Light Yied = \frac{(charge of scintillation)}{gain}$

Sum light yield = (Ch1 light yield) + (Ch2 light yield)

Geometric mean lingt yield = $\sqrt{(Ch1 \text{ light yield}) \times (Ch2 \text{ light yield})}$

Why a geometrical mean?

• For uniformly reconstructing light yield.

Attenuation length: λ

Single readout (EJ200 & EJ232)

EJ200 single light yield

Double readout (EJ200)

ch1 and ch2 sum

Ch2 light yield

ch1 and ch2 geometric mean

Double readout (EJ232)

Ch1 light yield double EJ232 ch1 Xaxis [mm] 15 22 20 10 18 16 14 LY [p.e.] 12 0 10 -5 -10 -15 -50 50 100 100 0 Yaxis [mm] SiPM

Ch1 and ch2 sum

Ch2 light yield double EJ232 Ch2 15 Xaxis [mn 20 10 18 14 LY [p.e.] 12 10 -5 -10 -15 -100-500 50 100 Yaxis [mm] SiPM

ch1 and ch2 geometric mean

LY [p.e.]

LY [p.e.]

Side readout (EJ200)

Side readout (EJ232)

Simulation

Simulation setup

Launch single 1000 events of e^- , π^- with 30, 40, 50, 60, 100, 150 GeV into the center of the detector.

Scintillator signals

- Use p.e. assuming MPPC linear response.
- $60~{
 m GeV}\,\pi^-$
- htemp • #p.e. = 0.0005 / MIP (3 mm thick) 90 80 Entries 1000 Mean 1.916e+04 Std Dev 2055 70 60 50L 40 30 20 10 0 20000 25000 5000 10000 15000 # p.e.

Cherenkov signals

Digitized detected Cherenkov photons

• Mean:
$$\widehat{N}_{det} = \Delta l \cdot \int_{\lambda_{\min}}^{\lambda_{\max}} \frac{2\pi Z^2 \alpha}{\lambda^2} \left(1 - \frac{1}{n^2(\lambda)\beta^2}\right) \cdot QE(\lambda) d\lambda$$

• Digitized: $N_{det} = gRandom \rightarrow Poisson(\hat{N}_{det})$

N: the number of Cherenkov photons

- *x*: particle path length
- λ : wavelength of Cherenkov photons
- α : Fine-structure constant
- Z: charge

https://www.nikon.com/business/components/assets/pdf/sio2-e.pdf

- NIFS-V made from NIKON.
 - Refractive index

$$n^{2}-1=\frac{P_{1}\lambda^{2}}{\lambda^{2}-Q_{1}}+\frac{P_{2}\lambda^{2}}{\lambda^{2}-Q_{2}}+\frac{P_{3}\lambda^{2}}{\lambda^{2}-Q_{3}}+\frac{P_{4}\lambda^{2}}{\lambda^{2}-Q_{4}}$$

Dispersion Coefficients *7			
P1	6.40349086E-01		
P ₂	3.74308316E-01		
Рз	8.97505390E-02		
P4	9.08924481E-01		
Q1	4.25379400E-03		
Q2	1.27798420E-02		
Q₃	1.40044370E-02		
Q4	9.93231891E+01		

ОН	< 100 ppm	Al	< 0.2 ppb
Li	< 0.2 ppb	Ti	< 0.2 ppb
Na	< 0.2 ppb	Cr	< 0.2 ppb
К	< 0.2 ppb	Fe	< 0.2 ppb
Mg	< 0.2 ppb	Cu	< 0.2 ppb
Ca	< 0.2 ppb		

Impurities

• Checking refractive index

• Internal transmittance.

$$T[\%] = 0 \ (\lambda < 150 \text{ nm} = \lambda_{\min})$$

$$T[\%] = 10 \ (\lambda - 150 \text{ nm}) \ (\lambda < 160 \text{ nm})$$

$$T[\%] = 100 \ (\lambda \ge 160 \text{ nm})$$

Thickness:10 mm

https://www.nikon.com/business/components/assets/pdf/sio2-e.pdf

Wavelength[nm]

CsI photocathode

https://www.hamamatsu.com/content/dam/hamamatsuphotonics/sites/documents/99_SALES_LIBRARY/etd/PMT_handbook_v41.pdf

- Assume ~ 10 %.
- $\lambda < 200 \text{ nm} = \lambda_{\text{max}}$.

図 4-2(b) 透過型各種光電面分光感度特性

Calibration with EM component

• Showers caused by e^- has only EM components.

(Output signals) = $k \cdot$ (Initial particle energy)

• Using this k, reconstructing initial hadron energy from output hadron signals.

(Reconstructed hadron energy) = $\frac{1}{k}$ (Output hadron signals)

χ estimation

Using initial particle energy and solving

$$\chi = (S - E)/(C - E).$$

(use most probable value)

Discussion

Better Dual-Readout performance with higher correlation between Scintillator signals and Cherenkov signals.

