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Abstract. We present work on design and reconstruction methods for sampling
electromagnetic calorimeters with emphasis on highly granular designs. We use
the clustered logarithmically weighted center-of-gravity (lwk-means) for bench-
marking position resolution. We find that θ and ϕ resolution for high energy
photons in Si-W designs improves with increasing both sampling frequency and
sampling thickness. Augmenting only one is found to have mixed results. We
find that lwk-means is unable to effectively use calorimeter transverse cell sizes
smaller than 2 mm. New reconstruction methods for highly granular designs are
developed. We find that methods that only measure the initial particle shower
and disregard the remaining shower can take advantage of cell sizes down to
at least 10 µm significantly outperforming the benchmark method. Of these,
the best method and design is the initial particle shower “single hit”, method
using the calorimeter design with the highest sampling frequency and sampling
thickness.

1 Introduction
We have been working on a new approach to forward calorimetry for luminosity measure-
ment at a future high energy e+e− collider using both Bhabha scattering and the e+e− → γγ
process. Further motivation can be found in other work [1]. We note here that improving an-
gular measurements of Bhabhas and γγ is important for luminosity systematics and that γγ is
important for addressing beam biases present in Bhabhas [1]. This has focused our attention
on how well one can reconstruct high energy electromagnetic showers and in particular those
of high energy photons using dedicated electromagnetic calorimeters (ECALs). This appli-
cation emphasizes high performance energy resolution, polar angle resolution, and azimuthal
angle resolution. In the present work, the focus is on position/angle resolution.

In ECAL design, designs that are highly segmented longitudinally typically have high val-
ues of Molière radius (RM), corresponding to thelateral spread of an electromagnetic shower
being large. This metric is used as a rule-of-thumb for determining the likely quality of posi-
tion or angle reconstruction of a calorimeter design [2]. It is considered inversely correlated
to position/angle resolution. However, as we shall demonstrate in Sect. 3 and Sect. 4, the ulti-
mate position/angle resolution is more related to how well one can construct the interactions
associated with the initial shower components.

The Molière radius is measured with respect to the shower axis, which is the center-of-
gravity (CoG) of the shower along the direction the shower proceeds. In a sandwich calorime-
ter, with square cells, there is measurement bias in the CoG that arises when the shower is
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at an angle with respect to the surface of the calorimeter. For this reason it is necessary to
measure the particle shower angle before the CoG as the calorimeter measurements must be
rotated to correct for this bias. A demonstration of this can be seen in figure 1, wherein
the CoG bias from angles of incidence of the particle shower has been simulated for a toy
detector concept.

Figure 1. Center-of-gravity bias in radius and ϕ measurements given various values of θ and using 128
GeV photons. This detector simulation was done with a detector displacement from the initial particle
position of 2.5 meters. The simulation includes a 3.5T magnetic field. The detector is a sandwich design
with cells in the x-y plane and layers along the z axis.

We observe the expected bias in that the bias in radius, for small angles, scales linearly
with θ and that there is no bias in ϕ with respect to θ value. For the variance of the resolution
we observe that the ϕ variance scales with θ−1 while R variance of resolution is constant in θ.

Originally the Molière radius was characterized by the cylindrical radius, about the
shower axis, which contains 90% of the deposited energy of the particle shower [3]. The
Molière radius can span large values for various experiments, where SiW (Silicon-Tungsten)
sandwich will be close to the RM of Tungsten of 9.33 cm while air shower experiments are
near 73.30 meters. For ECALs made of mixtures of materials the Molière radius can be
computed from references with respect to the electromagnetic scale energy (Es) as

RM = Es

∑
j

w jEc j

X0 j

−1

≈

∑
j

w j

RM j

−1

(1)

where the radiation length weights, w j, of each material is used with respect to its electron
critical energy Ec j and radiation length X0 j [4]. We provide an additional approximation that
depends on the material specific Molière radius of RM j [5]. Note that equation 1 must be
computed using the density form, units of mass

area of RM j , not the length form. Not taking this
into account will result in the densest material erroneously dominating the calculation.

We can compare RM of two different calorimeter designs by using equation 1. We com-
pare two candidate forward calorimeters, the International Large Detector (ILD) Luminos-
ity Calorimeter (LumiCal) and a work-in-progress proposed new forward calorimeter. This
work-in-progress will have 240 layers of 1

6 X0 SiW , with 1 mm thick silicon. LumiCal uses
30 layers of 1X0 SiW, with 0.3 mm thick silicon. For simplicity, we evaluate both of these as



square calorimeters, that is to say segmented uniformly in the x-axis and y-axis. We note that
ILD LumiCal is segmented in rϕ, into layers of “towers” [5].

Using equation 1 and references we find that ILD LumiCal’s Molière radius is 14.7 mm
while the proposed design is 41.4 mm [5]. This is different from the measured value of
9.46 mm used in the LumiCal reference as we are using a simplified version of LumiCal and
not an effective Molière radius.

2 Benchmark estimators

2.1 Center of gravity

As established in Sect. 1, to best use methods like CoG or clustering one must remove any
angular bias. To remove angular bias one may use angular, i.e. θ or ϕ, CoG. This is often
accented by the use of clustering.

The standard CoG method is, mathematically, an average spanning the members of that
space. E.g. the CoG for hits along the x-axis is simply the average value of hits along the
x-axis. If the CoG is weighted, say by energy, then the user scales the x-axis according to the
hit energies, similar to spatial curvature if one wants to maintain the curved space analogy,
and computes the energy weighted average.

As a step-up from the standard or energy weighted CoG is the log-weighted CoG. Previ-
ous work has shown that it is less biased and better resolution for laterally segmented detec-
tors [6]. Here we write the general form of log-weighted weights as

w j = Max

 0 , W0 + log

wini, jx j

∑
j

wini, j

−1
 (2)

with dependence on a free parameter W0, that is to be determined later. The initial weights
of equation 2, wini, j, are determined by the user. The parameter W0, when using the general
form of equation 2, acts as a cut on the initial weights. When W0 is small, or correspondingly
the value of

∑
j wini, j is large comparative to the average value of wini, j, hits are given zero

weight. Meaning that they are disregarded in the average. This can prove to be problematic
in the limit of a large number of hits and low variance in the hit weights. Where the parameter

of W0 will, by the form of log
(
wini, jx j

[∑
j wini, j

]−1
)

in equation 2 also become a cut on the
number of allowed hits. E.g. for 100 minimum ionizing particles (MIPs) with exactly average
hit energies, any value of W0 < 2 will return all zero weights for all hits.

Typically the hit energy, E j, is used for wini, j and the weights of equation 2. Therefore the
log-weighted energetic CoG is slightly more complicated than linear weighting. Given this,
the value of W0 in equation 2 acts like both a cut on number of allowed weighted hits and as
an energy threshold. Since energetic weights in equation 2 couples the number and energies
of hits with their final weights.

2.2 Clustering

A common clustering algorithm is the k-means algorithm. It is attractive as it is simple
and fast. K-means relies on random number generation, and so is sometimes disfavored
over concerns that it does not generate exactly reproducible solutions or that this random-
ness cannot handle complex data. Despite these concerns, extensive studies have shown that
k-means reliably converges to optimal solutions within less than 100 iterations outside of spe-
cial circumstances [7]. Considering this, and that the data here does not meet any referenced
circumstances, we find no reason to be concerned with using k-means here [7].
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Figure 2. X-axis residual results for
various combinations of clustering
and CoG methods. This was done
using the toy MC as described in
Subsect 2.2. For conciseness each
combination label has been
shortened such that k-means is k,
nk-means is nk, wk-means is wk and
lwk-means is lwk.

As a part of the k-means algorithm the distance between a hit and all of possible hits
is computed. This is done to determine what hits to cluster and which hits to add to which
clusters. When dealing with two dimensional data with identical range and variance there is
no bias in k-means clustering. Generally, these two constraints are not true and thus there is
bias in the k-means clustering [8]. To remedy this normalized k-means, known as n-k-means,
is used [8]. The normalization is done according to range, and not integral, so the range of
values lies within [0, 1].

K-means computes centroids, i.e. averages, for clusters during assigning hits to clusters.
Centroids are typically computed using an unweighted averaging, i.e. an unweighted CoG
method as done in Subsect. 2.1. We may expand the k-means CoG to use weighted methods
such that we have weighted k-means, wk-means, and log-weighted k-means, lwk-means.

We test the combinations of these different CoG approaches and clustering. The exper-
imental approach is to use a toy MC. We simulate three clusters that are chosen about the
circumference of a circle that is centered in x,y at (0,0). So that the average of the clusters
should give (0,0). The radius of the circle is chosen by a uniform random from a value from
1 cm to 3 cm. Then three angles are chosen for the clusters such that they are equal angle
from each other. That is to say, each cluster is angularly separated by 2π

3 radians. Then 72
hits are generated, with 12 for the first cluster, 24 for the second cluster and 36 for the third
cluster. Each cluster is also given a different variance in spatial distribution that is consistent
across each trial of the simulation. Each hit is given a Gaussian weighting, to simulate energy
weighting, that is maximal at the center of the cluster. The y-axis values are also scaled by a
factor of three to simulate the reality that the clustering axes may not be similar in scale. Af-
ter this, the position values were digitized to the centers of 100 micron cells. This simulation
was then run for 100k trials.

To evaluate resolution the single axis resolution was computed from the residual of the
CoG of the clusters with respect to the origin. We then numerically evaluate the resolution
using the 2σ interquantile range (IQR) of the residuals. For this range this method of error
evaluation is known as IQR95, from the Gaussian confidence interval. These are then rescaled
by 1

2 to be the 1σ quantile. The bias is evaluated using the 0.5 quantile of the residuals.
We investigate the single axis, using the x-axis, resolution to evaluate bias and resolution.

As seen in figure 2, lwk-means performs best in resolution, roughly 10% better than wk-
means. We also observe that lwk-means has a larger bias than wk-means, but the bias in both
is smaller than the uncertainty. Meaning that both are, for this test size, unbiased. If bias and
resolution are combined quadratically, lwk-means is the superior method. This result also



finds that the resolution is larger than the intrinsic resolution. So there is a need to find better
methods in order to reach the intrinsic resolution.

3 Results for chosen benchmark estimator

Following the results of Sect. 2.2, and the results of other sources, we have chosen to use
lwk-means as the benchmark for this section [6]. For testing this method we have simulated,
in GEANT4, four designs. Two 1X0 designs and two 1

6 X0 designs. Each design is simulated
with both a silicon thickness of 0.3 mm and 1 mm. The simulation was done with fixed angles
of θ of 50 mrad and ϕ of π4 . We chose not to use test beam geometry, where the angles are set
to zero, as the bias observed in figure 1 shows that this case would be poorly representative
of typical function. The initial particle was chosen to be a 128 GeV γ so that these results
can be applied to future studies of γγ luminosity studies at various energies that are spaced
according to log2(E). The materials used in the detector were a passive layer of tungsten, an
active layer of silicon, 1 mm of PCB (G10) and 1 mm of air gap. The detector was offset
by 2.5m from the beam origin in order to be comparable to the ILD forward calorimeter
region [9].

This is done with numerous values of different cell sizes for the silicon active layer. Digi-
tization is done after GEANT4 is ran such that the generator level information of the steps in
GEANT4 are stored and then digitized afterwards based off of the specifications of the cells
that the user wants. This was done to avoid geometry limit issues and memory issues that
can arise in GEANT4 when one tries to simulate numerous layers of small, ≤100 µm, cells.
There is also a possibility of charge sharing but the work shown here does not include any
charge sharing of nearby pixels.

For this particular simulation, since there are no “towers” as there are in the ILD LumiCal
design, instead the initial clustering is done in layers [5]. As in the ILD LumiCal reconstruc-
tion, clustering is then repeated in these segments, again here layers instead of “towers”, and
then repeated across layers until there is one centroid. This centroid, i.e. final CoG, is then
treated as the measurement. We also use the same optimized value of W0 = 3.4 as is done
elsewhere [6].

Investigating the results of figures 3 and 4, we may model the change in performance for
a given detector design, using a CoG approach such as in this section, as follows. We propose
that the position resolution

σres. ∼
RM√
fsamp.

(3)

depends on the Molière radius and the sampling fraction, fsamp., which is unitless. This
model is not new and calorimeter design references note the dependence on these factors [10].

Computing the Molière radius for a composite material, as done in Sect. 1, reveals that
the Molière radius depends on the sampling frequency, N , in units of samples

X0
. Such that

RM ∼
1
N

(4)

the Molière radius is inversely related to the sampling frequency. We can also relate the
sampling fraction to the thickness of the active component and passive component [10]. The
sampling fraction is defined

fsamp. =
Eact.

Epas. + Eact.
≈

dEact.

dx
dact.

[
dEact.

dx
dact. +

dEpas.

dx
dpas.

]−1

(5)



3− 2.5− 2− 1.5− 1− 0.5− 0 0.5
([cm])

10
Logarithm of Cell Size log

1

1.5

2

2.5

3

 R
es

ol
ut

io
n 

[m
ra

d]
θ

lw
k-

m
ea

ns
 

 Cell Scan for Four Calorimeter Designsθlwk-means 

Resolution Model Fit

/NDoF = 24.9/172χm Si µ Layer, 30001/6 X

/NDoF = 6.6/172χm Si µ Layer, 30001 X

/NDoF = 3.7/172χ Layer, 1mm Si 01 X

/NDoF = 72.7/172χ Layer, 1mm Si 01/6 X

 Cell Scan for Four Calorimeter Designsθlwk-means 

Figure 3. Results of cell scan of θ
resolution using four calorimeter
designs to use as reference. The
estimator used is the log-weighted
k-means, lwk-means, method. We
observe that the designs with thicker
silicon are superior for θ resolution.
The fit corresponds to a
parameterized form of equation 9.
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Figure 4. Results of cell scan of ϕ
resolution using four calorimeter
designs. The reconstruction method
used is the log-weighted k-means,
lwk-means, method. We observe
that designs with higher sampling
frequency are superior for ϕ
resolution. The fit corresponds to a
parameterized form of equation 9.

as depending on the energy deposited in the active and passive layers. This is typically
done by choosing a specific physics process, namely MIPs [10]. For said physics process
there is a known energy per length differential of dE

dx which typically varies for different
materials and thus the different notation for the active and passive materials. The sampling
fraction, when the thickness of the active layer is held constant,

lim
dact.=const.

fsamp. ∼
1
N

(6)

follows an inverse relationship with the sampling frequency. We then rewrite equation 5 in
terms of the thickness of the active component, dact., the thickness of the passive component,
dpas. and the sampling frequency. By using equations 4, 5 and 6, we rewrite equation 3

σres. ∼

√
dpas.

dact.N
3 (7)

to show how it compares to dependence on the thickness of the active layer and the sam-
pling frequency. We note that the position resolution is dependent on 1√

fsamp.
, which is similar

to the dependence seen in energy resolution [10]. Upon examining the energy resolutions
from GEANT4 simulations, as seen in table 1, that energy resolution, E

E ∼

√
dpas.

dact.N
(8)

has similar dependence to the position resolution, but with a smaller power of sampling
frequency in the denominator. Using equation 8 we can note that equation 7 is equivalent
to σres. ∼

E

N
, having dependence on energy resolution. This energy resolution dependence



Table 1. A selection of the four electromagnetic calorimeter designs with measured electromagnetic
deposited energy fractions and energy resolution for 128 GeV photons. All calorimeters are

sufficiently deep to guarantee longitudinal containment (here 40X0.)

Energy Resolution
Layer Design Si Thickness [mm] EM Fraction Energy Resolution

1 X0 0.3 0.964% 18.4%/
√

E
1 X0 1 3.31% 15.7%/

√
E

1
6 X0 0.3 5.21% 6.6%/

√
E

1
6 X0 1 17.0% 4.8%/

√
E

agrees with current standards [10]. We can expand this further, to include effects from lateral
cell size, dcell, as has been shown by previous work [11]. Thus equation 7 is rewritten to

σres. ∼
E

N
⊕ edcell (9)

which has an exponential dependence on cell size. To keep the argument of the exponen-
tial function unitless, dcell is measured in terms of interaction lengths [11]. This term is added
in quadrature such that, for methods or designs that become limited by other factors, smaller
cell sizes do not improve performance. This exponential trend in cell size is observed as a
linear trend in the log plots of figures 3 and 4.

Fitting the cell scan plots seen in figures 3 and 4 to a parameterized form of equation 9
finds that the fit quality is plausible for the 1 X0 designs but questionable for the 1

6 X0 designs.
Particularly the fit of the 1

6 X0 designs is poor around the 5 mm cell size area. As a part of the
fitting process the parameter used to represent the E/N term was held constant amongst fits
for the same design. This term was also held constant in terms of the expected ratio from the
design values of E/N used. To address the poor quality of fit for the 1

6 X0 designs we propose

σres. ∼
E

N
⊕ (edcell +Ned2

cell ) (10)

an exponential expansion of the cell size dependent term that is dependent on the sampling
frequency. By introducing this term, and scaling with sampling frequency, the new term is
expected to only be significant in the 1

6 X0 designs.
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Figure 5. Following figure 3, we
repeat the cell size scan of θ for the
new model of equation 10 for the
1
6 X0 designs. The new model brings
the quality of fits to being
comparable to previous fits for 1 X0

designs.

We repeat the fitting process, as done before in figures 3 and 4, with the updated model of
equation 10. The results, as seen in figures 5 and 6, indicate that the new model is plausible.
We did not test the 1 X0 designs for the new model as the additional term is assumed to be
too small to impact the fit. During the fitting process the parameter that scales with sampling
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Figure 6. Following figure 4, we
repeat the cell size scan of ϕ for the
new model of equation 10 for the
1
6 X0 designs. The new model brings
the quality of fits for the 1

6 X0

designs to being plausible.

frequency was held constant for all the fits, to reflect the fact that the model would also
require this consistency across the different 1

6 X0 designs. So that the dependence on sampling
frequency is also plausible and consistent.

During the evaluation of fits it was determined that this additional factor influences the
resolution by roughly 0.2%. As such, the assumption that this effect is too small in the
1 X0 designs is plausible as the data uncertainty is comparable to 0.1%. One would need
considerable increase in data precision as this effect is already small in the 1

6 X0 designs.
Given these results equation 10 is a plausible model for position resolution when incident
particle energy is fixed and one only varies sampling frequency and sampling fraction.

To determine how well a pairing of calorimeter design and reconstruction technique does
at exploiting the cell size being used, we introduce dmin., the point at which the pairing reaches
a minima resolution. We refer to this as the minimum cell size a.k.a. minimum pitch. By
its design, dmin. is also the point at which smaller cell size no longer positively impacts the
quality of reconstruction. Therefore knowing the value of the minimum pitch for a particular
pairing can be useful for informing the design of the cell size used for a given calorimeter
design.

The minimum pitch values were found using the fits seen in figures 5, 6 and then com-
piled into table 2. This table also features the minimum resolution values as found using the
lwk-means method with the various designs. Examining the resolution values reveals that
there is no shared ordering for the designs in terms of quality of resolution between θ and
ϕ for the lwk-means reconstruction. Instead it seems that increasing sampling frequency is
more impactful for ϕ resolution while increasing sampling fraction is more impactful for θ
resolution. Increasing both simultaneously, as done in the 1

6 X0 and 1 mm silicon design, has
the benefits of both improvements and is the best design for position resolution in both angles.

The results of table 2 also indicate that the cell size does not have significant effect on
lwk-means reconstruction below 2 mm in cell size. As such, lwk-means reconstruction is
not desirable in circumstances where one wishes to use smaller cell sizes to achieve higher
resolution. Lwk-means reconstruction is suitable for large cell sizes where it is able to ap-
proach the d

√
12

fundamental geometric cell resolution limit. We can test this by noting that
the geometric cell resolution limit for θ

σθ =
d

zo f f set
√

12
(11)

depends on the transverse cell size, d, and the offset of the calorimeter from the inter-
action point along the z-axis, zo f f set. As an example, for the 1

6 X0 and 1 mm silicon design
equation 11 would be roughly 0.6 mrad. Which is slightly smaller than the value of 0.98 mrad
observed in table 2.



Table 2. Extrapolated minimum pitch given the fits seen in figures 5 and 6. Values are calculated using
the fits of said figures. These results are representative of their listed designs and the lwk-means

reconstruction method.

Minimum Pitch for lwk-means Reconstruction
Design Variable Resolution [mrad] Minimum Pitch (dmin.) [mm]

1
6 X0 , 0.3 mm Si θ 1.30 ± 0.01 5.3 ± 0.5
1 X0 , 0.3 mm Si θ 1.22 ± 0.01 3.6 ± 0.4
1 X0 , 1 mm Si θ 1.11 ± 0.01 2.0 ± 0.3
1
6 X0 , 1 mm Si θ 0.98 ± 0.01 4.3 ± 0.4

1 X0 , 0.3 mm Si ϕ 23.0 ± 0.2 29 ± 3
1 X0 , 1 mm Si ϕ 20.1 ± 0.2 6.9 ± 0.7

1
6 X0 , 0.3 mm Si ϕ 16.5 ± 0.2 4.7 ± 0.5

1
6 X0 , 1 mm Si ϕ 13.7 ± 0.2 5.1 ± 0.5

We warrant the result of lwk-means reconstruction with three conditions. Other cell de-
signs, such as rϕ cells, can be used and they may be more advantageous for lwk-means. The
lwk-means method also has numerous parameters that can be further tuned for these particu-
lar designs, which was not exhaustively done here. In addition to this algorithmic tuning it is
also common to have weights for layers, both depending on the shower shape and quality of
the layer’s measurement, such as done in OPAL’s luminosity measurement [12].

3.1 Projecting results

Given the results of Sect. 3, the GEANT4 simulations and the resolution models provide a
starting point for further extrapolation for the purpose of determining optimal calorimeter de-
sign. In particular, we may choose to use equation 3 as a starting point since it depends on the
Molière radius and sampling fraction. Both of which can be estimated by using calorimeter
design values and material reference values.

A computer script was written to perform this projection. The results were taken a relative
with respect to values from the 1 X0 and 0.3 mm silicon design. This projection was given
three constraints for possible projected designs with particular emphasis on constraining to
a design that is feasible for the forward calorimeter region of ILD [9]. Designs that exceed
1 m in total length are vetoed to respect the space of the forward calorimter region [9]. We
have also constrained the sampling frequency to be greater than 0.5, as the performance dras-
tically decreases below this point. The maximum cell thickness was constrained to 1.8 mm
in order to keep possible designs within ranges that have been experimentally tested in other
work [13].

The results, as seen in figure 7, indicates that the ordering and magnitudes of resolutions,
as seen in table 2, are not consistent with the projection. However, it is not expected for the
ordering or magnitude of this projection to match as this projection includes only calorimeter
design effects and no reconstruction effects.

Considering the results of the projection it is clear that more granular designs are prefer-
ential for improving position resolution. The design that uses 1

6 X0 and 1 mm silicon is not
only the best design tested here but performs near the optimal point of the projected designs.
Since the performance of the lwk-means reconstruction seen in Sect. 3 does not agree with
the significantly better performance for granular designs seen in figure 7, we suspect that new
methods, particularly suited for granular designs, need to be developed. To do so we must
investigate things that granular designs are suited for.
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Figure 7. Results of extrapolating out equation 7 for the two degrees of freedom that it has. The
sampling frequency scales with the plot y-axis while the sampling fraction is related to the sampling
thickness. Four points are marked for reference as the designs being tested in this work.

4 New reconstruction proposal

In a calorimeter designed for tracking the sampling frequency is typically increased compared
to calorimeters built for energy resolution where the sampling fraction would be increased
instead. The increased sampling frequency allows for numerous measurements to be made
of incoming particles with minimal scattering of the incoming particle. We propose to mimic
this process for highly granular sampling calorimeter designs by focusing on the initial part of
the particle shower. In this regime the shower is not well described by the Molière radius, so
we do not expect large values of Molière radius to degrade performance. Instead the shower
is characterized by the spread of the photon conversion that starts the particle shower. This
is characterized by physics like the Bethe-Heitler process where the opening angle is quite
narrow, ≈ 1/γ = mec2/Eγ , and inversely related to the incident photon energy [14]. For an
incident 128 GeV photon, as used in the GEANT4 simulations done here, this corresponds to
a few micro-radians to tens of micro-radians.

4.1 Investigating the initial shower

If we investigate the first five radiation lengths of the particle shower, such as in figure 8,
we can see that the structure of the initial shower, and its trajectory, are much clearer in the
more granular design. There are numerous layers where the only hits within the window
displayed in figure 8 are the ones from the initial shower conversion. By comparison the
five layers from the less granular design feature other hits that may not be directly related
to the initial shower conversion. The increased number of samples, by virtue of increased
sampling frequency, allows for the use of more comprehensive methods like averaging and
fitting. The increased number of samples also inherently reduces the statistical error. There



are thus multiple reasons to believe that the granular design can outperform the low sampling
frequency design on position resolution.
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Figure 8. Event display comparing the initial shower for two different events for two different designs.
The first five radiation lengths of layers after the shower start are shown for each. Both are 128 GeV
γ events that converted in tungsten, have the same incident angles, and are centered on the conversion
point along the X-axis and Y-axis positions. The transverse cell sized used for both was 100 µm but
the bin sizes are 10 times this, at 1 mm. The plots share one color axis that represents the energy in
each bin as the logarithm of the number of MIPs. The integrated radiation length is done relative to the
conversion point.

4.2 New methods

For the sake of conciseness we will focus this section on the results for θ resolution.
To begin testing methods of position reconstruction using only the initial particle shower

one needs a method to isolate the initial particle shower from the remaining shower. To do
this a window is used in terms of the z-axis, or layer number, and the value of θ corresponding
to hits in the active layer with respect to the interaction point. We have chosen not to use any
windowing in ϕ for this study. Since we anticipate varying the cell size, as done in Sect. 3,
we need to choose a value for the θ window that will be small enough to take advantage of the
cell size. As such, we have fixed the value of θ for the window to be the equivalent angular
spread of three transverse cell sizes, centered on the cell the shower starts in. This value can
be calculated using equation 11.

For the purpose of this study we wanted to mainly be sensitive to the underlying calorime-
ter design and not systematics from the reconstruction method. As such we have “cheated”
the values for the true angles of θ and ϕ as well as the position of the start of the electro-
magnetic shower. By cheating these values we ensure that the windowing is being utilized
correctly.

The windowing process starts with applying the cut in θ centered on the true θ value. This
windowing cut was scaled according to the transverse cell size such that it would be a three
cells in diameter. The remaining hits are then discarded if they exist outside the window. A
second cut is applied to hits that occur deeper than the shower maximum energy deposited
layer. Of the remaining hits an algorithm, which starts at the earliest, along the z-axis, hit in
the electromagnetic shower, checks the subsequent layer for hits. If there are no hits then the
algorithm assumes that the initial shower has scattered out of the window and truncates the



sample to those which are before this point. If there are hits in the next layer then it includes
these hits with the starting hit and then repeats the process, looking at the next layer for hits.
This repeats until it either finds no new hits in the window or it reaches the layer of the shower
maximum. At which point it stops and the collected hits are used as representing the initial
shower.

The efficiency of this windowing algorithm, done with the four different designs, can be
seen in figure 9. We find that, regardless of which design is used, there are a significant
number of events that fail to have any hits within the window. This is with exception to a
sweet-spot for both granular, 1

6 X0 layers, designs around the 100 micron transverse cell size.
We postulate that this sweet-spot occurs because the equivalent angular spread per layer for
these cell sizes approaches 1-10 microradians. This angular spread is similar to the spread
expected from either multiple scattering or photon conversion [4] [15]. Due to these sources
of angular spread, cells that are even smaller end up with particles of the initial shower not
being in the same cell or even being nearest neighbors. Therefore a windowing algorithm
that cuts out beyond nearest neighbors, as done here, is cutting out some of the particles of
the initial shower. Suggesting that the windowing algorithm needs improvement to handle
these other cases. Similar to the results for position resolution in Sect. 3, the best design for
window efficiency is almost always the 1

6 X0 and 1 mm silicon design.
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Figure 9. Window efficiency for θ
window used for the initial shower
reconstruction methods. Events
where there are no hits in the silicon
within the window after the start of
the shower cause the less than 100%
efficiency.

Inspired by other work that fits electromagnetic showers, we chose to test both averaging
and fitting of the initial particle shower [16]. Both averaging and fitting were tested using
unweighted and energy weighted versions. It was found that averaging always resulted in a
slightly poorer resolution to fitting. As such we do not present the results of using the aver-
aging reconstruction methods. For notation purposes, we refer to the energetically weighted
initial shower fit method as ISE fit and the unweighted initial shower fit as IS fit.

Fitting was done by fitting the θ of the windowed hits to a single parameter of a constant.
This was done so that the quality of fit, and the uncertainty of the fitted value, could be
used in analysis. The results of the fitted reconstruction methods, as seen in figures 10, have
similar linear trends in the log-log plots of resolution and cell size. This is indicative of the
exponential term seen in equation 9.

Unlike the results of Sect. 3 we do not see evidence of minimum resolution being reached
all the way down to the smallest, roughly 10 µm, cell size tested here. Instead the fitting
methods seem to follow the geometric value of d/

√
12. Indicating these reconstruction meth-

ods are good for future designs that want to exploit smaller cell sizes. Comparing the two fit
methods against each other we find that the unweighted fit performs slightly better. We also
observe that the best design is the 1

6 X0 and 1 mm silicon design.
For the sake of comparison of the fit methods we choose to restrict to 100 micron trans-

verse cell size and use the best design. For 100 micron cells the best design is the 1
6 X0 and



Figure 10. Results of cell scan of θ resolution of IS fit, the unweighted initial shower fit method, and
the ISE fit, the energy weighted initial shower fit method. At cell sizes smaller than 100 microns the
1
6 X0 and 1 mm silicon design is best. Similar performance is observed for both methods.

1 mm design. At this point ISE fit θ has a resolution of 0.22 ± 0.01 mrad conversion and
IS fit θ has a resolution of 0.10 ± 0.01 mrad. So the unweighted fit outperforms the energy
weighted fit by roughly a factor of two. It should be expected that weighting for energy in
the initial shower does not improve performance as it makes the reconstruction sensitive to
the particle multiplicity of the initial photon conversion as well as fluctuations in the energy
deposited.

As an alternative to the fitting methods we propose a new approach that assumes that
we have a method of determining which hit in the initial shower sample has the minimum
residual to the true θ value. This method, dubbed the “single hit” method due to it relying on
a single hit, uses cheated information so that the method can be evaluated without systematics
of the method used in the identification of the single hit. The result of the single hit method,
as seen in figure 11, has a significantly different trend from those seen in Sect.3 or for the
previous fitting methods.

We observe that the performance of the single hit method is superior to the previous fit
methods with a minimum resolution in θ of 2.95 ± 0.05 micro-radians. Figure 11 also shows
that, for ϕ resolution, the single hit method can approach 0.1 mrad resolution. The perfor-
mance is optimal for the 1 mm Si with 1/6 X0 layers design around 100 micron transverse
cell size. We postulate that this optimal point occurs for similar angular spread reasons that
were observed with window efficiency in figure 9. This performance surpasses even the value
expected from the geometric limit computed from equation 11. While this is initially unex-
pected there is a plausible explanation. The single hit method requires sampling numerous
points. When the incidence angle of the incident particle is non-zero there is a significant
chance that the shower, as it travels through multiple layers, will hit cells that are not per-
fectly aligned. This staggering in the cells results in

de f f . =
d

NIS
(12)

an effective cell size we refer to as de f f .. This effective cell size can be reduced by as
much as the number of layers in the initial shower, here written as NIS . This staggering can
be observed in figure 8, where there are multiple bins in the second layer on the granular
calorimeter’s event display. We note that equation 12 assumes that the spacing of layers can
optimally take advantage of this staggering effect, which is likely not true. Still, this is a
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Figure 11. Results of cell scan of θ and ϕ resolutions for the single hit method. At cell size of roughly
100 microns the 1

6 X0 and 1 mm silicon design is best.

plausible explanation as choosing a single hit bypasses the averaging that gives rise to the
typical limit seen in equation 11.

For the single hit method to be viable in a un-cheated analysis a method for identifying
the minimum residual hit is needed. More work needs to be done to better understand the
staggering effect and how it effects the methods covered in this section.

5 Conclusion and outlook

Related to further studies on forward calorimeter design at future high energy e+e− colliders,
this work has displayed numerous benefits for calorimeter designs with higher sampling fre-
quency and higher sampling thicknesses. Of all the reconstruction methods tested here, the
1
6 X0 and 1 mm silicon design, which had both the maximally tested sampling frequency and
sampling thickness, outperformed the other designs in both θ and ϕ resolution. This design
is also, per our projections of possible calorimeter designs presented in Sect. 3.1, within the
forward calorimetry space constraint for future linear colliders and close to optimal position
resolution. Our new reconstruction methods, covered in Subsect.4, are capable of approach-
ing, and even surpassing, the typical geometric resolution limit for cell sizes down to, at
least, 100 µm. We expect that a staggering effect, which yields a smaller effective cell size,
is responsible for the minimum θ resolution for the single hit method of 2.95 ± 0.05 micro-
radians. Further work needs to be done to flesh out the new reconstruction methods. Both
in terms of improving the windowing process and in terms of making the analysis a purely
detector level analysis.
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