

Beam Loading Studies in Positron Source of Capture Linac in Compact Linear Collider (CLIC)

Institute for Research in Fundamental Sciences

Nafiseh Mesbah (Nafiseh.Mesbah@cern.ch)

Steffen Doebert¹, Mohsen Dayyani^{1,2} Andrea Latina¹, Yongke Zhao¹, Javier Olivares¹

European Organization for Nuclear Research (CERN), Geneva, Switzerland.
 Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran, Iran.

8–11 Jul 2024 Tokyo, Japan

- Introduction
- Beam Loading effect
- RF-Track and Beam Loading
- Simulation and Results
- Summery

Introduction

- Beam Loading effect
- *** RF-Track and Beam Loading**
- **Simulation and Results**
- **Summery**

Introduction

4/21

Challenges

Capture Linac includes both e- e+ with large energy-spread, large-bunch-length, large-emittance •

Structure suffers from both e- and e+ Beam Loading

Introduction

- Beam Loading effect
- *** RF-Track and Beam Loading**
- Simulation and Results
- Summery

Cavity Beam Interactions and Beam Loading Effect

- A particle crossing a cavity would be affected by the excited fields inside the cavity.
- Care must be taken that there are two sources for exited fields.
- The induced excitation can reduce cavity voltage and hence the Gradient of the structure.
 - Lasts for a long time Long range effect
 - Accumulated from bunch-to-bunch

- Introduction
- Beam Loading effect
- ✤ RF-Track and Beam Loading
- Simulation and Results
- Summery

RF_Track

- a novel tracking code developed by Andrea Latina
- transport beams of particles
- solving fully relativistic equations of motion
- using parallel algorithms
- written in optimized and parallel C++
- user interfaces scripting languages
 - Octave
 - Python
- RF-Track has been tested successfully in several cases:
- ELENA ring, the CLIC positron injector, and the AWAKE injector Linac.

Example (Octave interface)
% load RF-Track
RF_Track;
% setup simulation
TL = setup_transferline;
B0 = setup_beam;
% track
B1 = TL.track(B0);
% inquire the phase space
T1 = B1.get_phase_space("%x %xp %y %yp");

```
% plot
plot(T1(:,1), T1(:,2), "*");
xlabel("x [mm]");
```

ylabel("x' [mrad]");

https://zenodo.org/record/4580369

https://abpcomputing.web.cern.ch/codes/codes_pages/RF-Track/

9/21

Beam Loading in RF_Track

- Gradient reduction due to beam-cavity interaction in TW structure can be understood with the Power-Diffusive model.
- Beam loading as a Self-consistent module implemented in RF_Track
 - Can be attached to Drift spaces, TW and SW structure, field maps
- From Poynting: Equation in terms of Gradient: ٠ $-\frac{\partial G_{\text{eff}}}{\partial t} = v_g \frac{\partial G_{\text{eff}}}{\partial z} + \left(-\frac{v_g Q}{r_{\text{eff}}} \frac{\partial (r_{\text{eff}}/Q)}{\partial z} + \frac{\omega}{Q} + \frac{\partial v_g}{\partial z}\right) \frac{G_{\text{eff}}}{2} + \frac{\omega r_{\text{eff}} \tilde{I}}{2Q}$ DOI: 10.1103/PhysRevSTAB.14.052001 Beam Loading term! Parameter Value Structure frequency 2 GHz Q- factor 18346 Input power 59.54 MW Average group velocity 0.0145 c Filling time 333 ns Number of bunch per train 312 Bunch spacing 0.5 ns Population per bunch 7.5e9 Train length 156 ns

10/21

- Introduction
- Beam Loading effect
- ***** RF-Track and Beam Loading
- Simulation and Results
- Summery

Phase Scan

• The structure can be optimized through different criteria.

e- e+ outputs

- Most of the positrons are lost at the beginning of the pipe => Cooling needs to be addressed.
- Electrons have a phase shift of π degree apart with respect to positrons, moving to the accelerating phase and gaining energy.

Beam Loading results

• Gradient reduction for middle bunch n=150

14/21

Beam Loading results

• Beam Loading effect on longitudinal phase space for n=300 (Most Affected by Beam Loading)

Beam Loading results: Transient effect

I.b

300

350

- $\tau_f > \tau_{train} \Rightarrow$ transient Beam Loading affects particles.
- Bunch-to-bunch variation

35 30

25

20

15

10

5

0

0

50

- 1.5

0

100

150

t[ns]

2

t [ns]

DOI: 10.1103/PhysRevSTAB.14.052001

200

Energy before deceleration Energy after deceleration

3

250

V[V], P[MWJ2, I[A]x10

Parameter	Value
Structure frequency	2 GHz
Q- factor	18346
Input power	59.54 MW
Average group velocity	0.0145 c
Filling time	333 ns
Number of bunch per train	312
Bunch spacing	0.5 ns
Population per bunch	7.5e9
Train length	156 ns

Yield spread

- A former optimization demonstrated a yield of 2.2 using 11 structures [DOI:10.18429/JACoW-IPAC2021-WEPAB014].
- Impact of positron beam loading on optimized yield

Further optimization

- Longitudinal phase space is less influenced by beam loading.
- Achieve a 200 MeV goal with fewer structures.
- The greater difference in energy between electrons and positrons results in easier separation in next stages.

- Introduction
- Beam Loading effect
- ***** RF-Track and Beam Loading
- Simulation and Results
- Summery

Discussion and outlook

✓ Achievements:

- Tracking of electron and positrons in capture Linac of positron source of the CLIC has been performed using RF_Track.
- Beam Loading with respect to presence of both electron and positron has been studied with the aid of Beam Loading simulation module in RF_Track.
- Beam loading significantly affects bunches with large energy and velocity spreads.
- Transient beam loading requires careful attention, especially when the bunch train is shorter than the filling time of the accelerator structure, as individual bunches are significantly affected by beam loading.
- The presence of electrons could effectively compensate for beam loading effects.
- Studies are still ongoing

✓ future plans and studies:

- Further optimization for finding appropriate phase and gradient in the presence of Beam Loading to maximize the yield.
- Further optimization to investigate and compensate bunch to bunch variation due to Beam Loading effect.
- Further studies to investigate the behavior of electrons within the structure and their impact on the beam loading effect.

Thanks for your attention

(Nafiseh.Mesbah@cern.ch)

home.cern

backup

Positron Source complex

Different sub-systems of the positron source basic scheme.

arXiv:2202.04939v2 [physics.acc-ph] 29 Mar 2022

inputs

unit	input
[#]	81254
[MeV]	58
[MeV]	123.409
[mm/c]	171
[ns]	0.0322
[degree]	23.18
[mm]	12.67
[mm]	12.70
[mm.mrad]	99084.22
[mm.mrad]	99581.53
	unit [#] [MeV] [MeV] [mm/c] [ns] [degree] [mm] [mm.mrad] [mm.mrad]

e	unit	input
N_particle	[#]	92906
ave-Eng	[MeV]	53
EngSpread	[MeV]	116.342
ave-time	[mm/c]	174
bunch_length	[ns]	0.0549
bunch_length	[degree]	39.50
beamSize-x	[mm]	12.59
beamSize-y	[mm]	12.56
emittance-x	[mm.mrad]	96178.16
emittance-y	[mm.mrad]	96676.89

• Electrons have a phase shift of π degree apart with respect to positrons, moving to the accelerating phase and gaining energy

