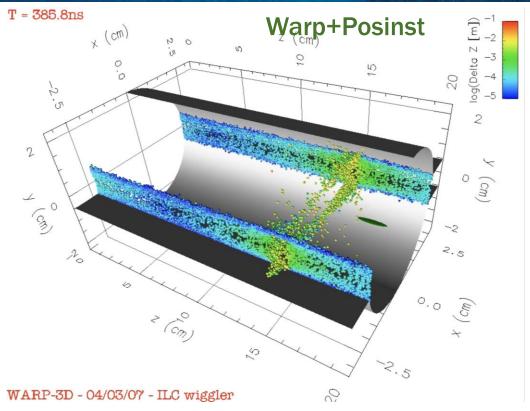
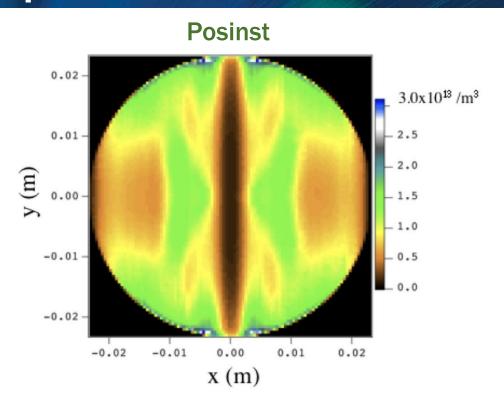

A next generation, integrated community toolset for the modeling of linear colliders

Jean-Luc Vay, Arianna Formenti, Marco Garten, Axel Huebl, Remi Lehe, Chad Mitchell, Ji Qiang, Olga Shapoval, Edoardo Zoni

International Workshop on Future Linear Colliders, LCWS2024 July 8-11, 2024 – The University of Tokyo, Japan



Berkeley Lab has long been home to state-of-the-art modeling of particle accelerators


Sample of applications

Berkeley Lab has long been home to state-of-the-art modeling of particle accelerators

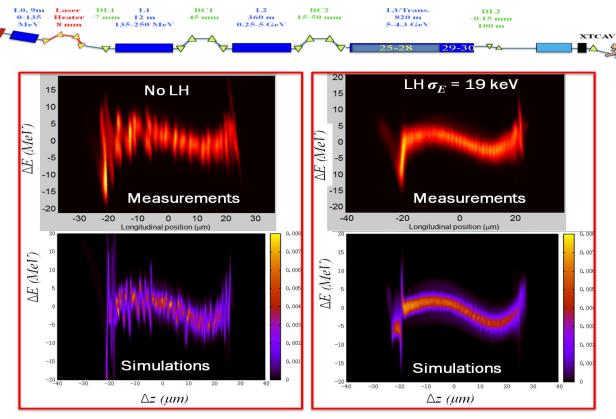
PIC calculations of the e-cloud in the ILC positron damping ring wigglers

C. M. Celata, M. A. Furman, J.-L. Vay, D. P. Grote, *Proc. PAC07* (2007) C. M. Celata, M. A. Furman, J.-L. Vay, D. P. Grote, *Proc. ECLOUD07* (2007)

Electron cloud cyclotron resonances in the presence of a short-bunch-length relativistic beam

C. M. Celata, M. A. Furman, J.-L. Vay, J. W. Yu, *PRAB* 11, 091002 (2008)

Berkeley Lab has long been home to state-of-the-art modeling of particle accelerators


BeamBeam3D

Strong beam-beam simulation of interactions in the LHC upgrade.

J. Qiang et al., Proc. IPAC 2015, Richmond, VA (2015).

Impact-T + Impact-Z (+ Genesis)

Start-to-end, one-to-one modeling reproduces microbunching in the LCLS X-ray FEL.

J. Qiang et al., Phys. Rev. Accel. Beams 20, 054402 (2017).

The Berkeley Lab Accelerator Simulation Toolkit was created to coordinate Berkeley Lab codes

blast.lbl.gov Open Source

2014

Codes:

- BeamBeam3D
- Impact-T, Impact-Z
- Marylie/Impact
- Posinst
- Warp

Applications:

Start-to-end accelerators

- beams, plasmas, lasers, structures
- rings, linacs, sources, injectors
- RF, plasma, dielectric acceleration
- conventional & plasma-based focusing
- e-cloud
- CSR
- cooling
- collisions
- beam-beam @ IP

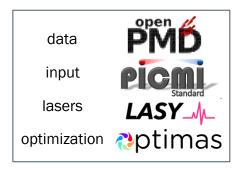
- ..

Codes were successfully used by accelerator community on major projects but:

- coordination of development was limited by legacy
- amount of duplication was growing
- number of additional physics modules, codes & contributions (from various institutions) was increasing
- need to modernize codes for increasing number of levels of parallelism and GPUs
- → new (more inclusive) name & coordination of codes development.

The Beam, pLasma & Accelerator Simulation Toolkit followed to better coordinate & modernize codes

blast.lbl.gov Open Source



Codes:

- BeamBeam3D
- Impact-T, Impact-Z
- Marylie/Impact
- Posinst
- Warp
- FBPIC
- HiPACE++
- ImpactX
- LW3D
- Wake-T
- WarpX

Standards:

Applications:

Start-to-end accelerators

- beams, plasmas, lasers, structures
- rings, linacs, sources, injectors
- RF, plasma, dielectric acceleration
- conventional & plasma-based focusing
- e-cloud
- CSR
- cooling
- collisions
- beam-beam @ IP
- QED effects

Plasma & fusion devices

and more (astrophysics, thermionics, microelectronics, ...)

Codes were successfully used by accelerator community on major projects but:

- coordination of development was limited by legacy
- amount of duplication was growing
- number of additional physics modules, codes & contributions (from various institutions) was increasing
- need to modernize codes for increasing number of levels of parallelism and GPUs
- new (more inclusive) name & coordination of codes development.

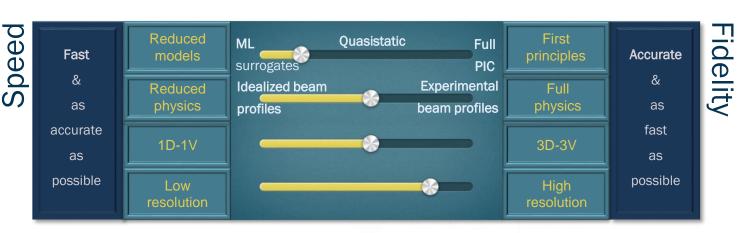
BLAST is a unique suite of interoperable codes & a multi-institutional international collaboration (>80 contributors, incl. from private sector).

Developed by an international, multidisciplinary team

open source initiative*

physicists + applied mathematicians + computational scientists + software engineers

BLAST: a cutting-edge open-source simulation toolkit for end-to-end accelerator modeling

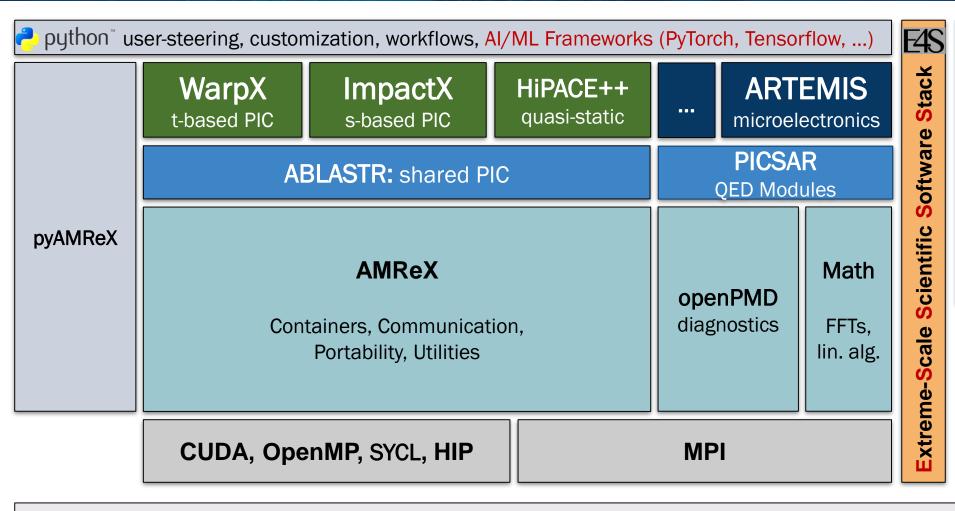

														BEAM PLASMA & ACCELERATOR SIMULATION TOOLKIT									
	it spirite spir							og serrer					Ser.				ccelerator's					· .	standards & workflows
	Code		I started Dimens	ionality d	apendent Solver		mplecti	Surrogate Surgual	s ^e /	raile (m	Jand	Riverd Stiverd	of ac		itce 18	elield ac	/ _ Oi -	Lloud B	is cess	Spinkad	ims	Data	PMD
	-	\leftarrow	$\overline{}$	/ 111.		/ 5	1/4/			C	/ 411		<u> </u>	100		/ Ø /		/ 💖		/51/.		Input	PICMI Standard
General purpose	Warp	1989	2/3/RZ++	t/s/ξ	ES/EM/QS			For./Python	~			Y	Y	~	~		✓		3D			Lasers	LASY
	Impact-Z	1999	3	S	ES	/		Fortran	/			~	~					~	1D		67		
	Impact-T	2002	3	t	ES			Fortran	/			\checkmark		/				~			GitHub	Optimize	ptimas
(legacy)	Marylie/IMPACT	2006	3	s	ES	/		Fortran	/			/	~										
Special	Posinst	2002	2	t	ES			Fortran									✓				ÖŠ		
	BeamBeam3D	2003	2.5	t,s	ES	/		Fortran	/				~			~						♣ Oak Rider	
	FBPIC	2015	RZ++	t	EM			Python	~	/					~					✓	SHA WAR	© EVERGY	FILMITIER
	LW3D	2018	3	t	LW			Fortran	/										3D			7,000	
	Wake-T	2019	RZ	ξ	QS			Python				/			~				1D		New codes	are integ	rated
New integrated	WarpX	2016	1/2/3/RZ++	t	ES/EM		**	C++/Python	~]	V	~	*	**	~]	~	/	✓	**	3D	**	around a co	_	
	HiPACE++	2022	3	ξ	QS			C++/Python	~	V	\overline{V}				V					~		_	
	ImmodV	2000	2		EC			C L L/D: db as	_									**	4D* MI*		performanc	e ıntrastr	ucture

* in development

ES=Electrostatic; EM=Electromagnetic; QS=Quasistatic; LW=Lienard-Wiechert; ML=Machine Learning Model

- all types of colliders: Higgs factory, 10 TeV parton, muon, plasma-based, ...
- tunability from fast modeling to detailed physics studies for collider design.

E.g., for a plasma-based collider: ML surrogate → Wake-T → HiPACE++→WarpX



w/CPU+GPU+ML support

^{**} planned, seeking additional funding

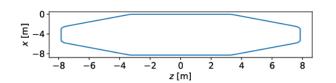
AMP leverages the ECP technology (E4S) underpinning WarpX → high-performance, integrated suite for particle accelerator modeling (& more)

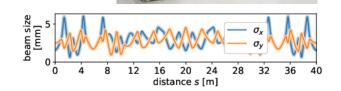
E4S is unique in the world:

→ advantage of unparallel performance & portability.

Python interface:

- Modular approach pioneered by Warp 20+ years ago
 → Coupling to other codes (e.g., Posinst, ICOOL, ...)
- Access to powerful AI/ML tools

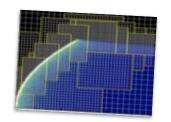



→ Propose to leverage for faster & larger scale modeling for colliders (all types) R&D

ImpactX aims at high(er) performance modeling of RF Accelerator Modeling

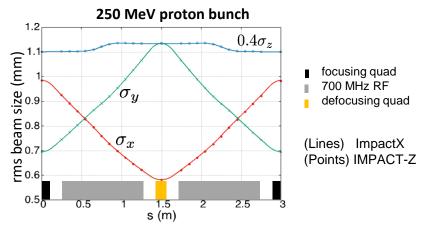
Beam-Dynamics in Linacs, Rings, Colliders

- intense beams, long-term dynamics
- HEP colliders: Higgs factory, 10 TeV parton,
 ee, hh, γγ, muons, ...
- Example of benchmark against
 Impact-Z on IOTA ring beam dynamics



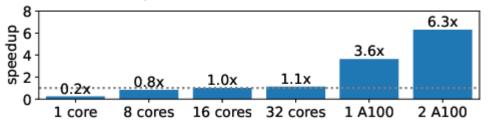
Advanced Numerics

based on IMPACT suite of codes, esp. IMPACT-Z and MaryLie


Triple Acceleration Approach

- GPU support
- Adaptive Mesh Refinement
- AI/ML & Data Driven Models

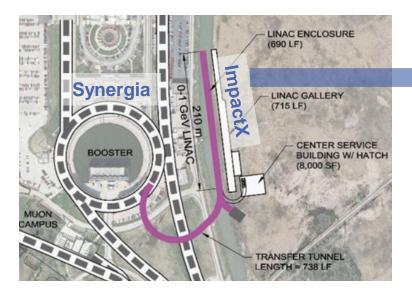
Benchmarks & Validations


- 86 continuously run benchmarks
- code-to-code comparisons

Performance

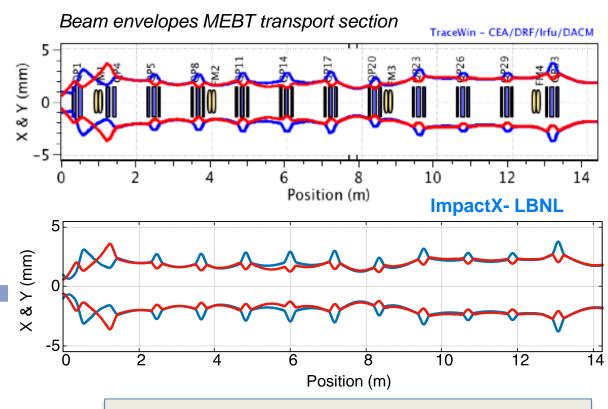
order-of-magnitude perf.

✓ from GPUs



ImpactX being applied to (& benchmarked on) high intensity beams in PIP-II

Proton Improvement Plan II (Fermilab)



Goal: start-to-end modeling and design tuning (virtual test stand)

to Synergia for modeling the Booster

5 mA beam modeling of the PIP-II linac

- Now: Benchmark against existing results using new parallel GPU-capable tools (ImpactX) for validation.
- Goal: Higher speed, resolution, and fidelity modeling.

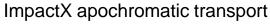
Samples of ongoing engagement in using next-generation BLAST tools to model future HEP colliders

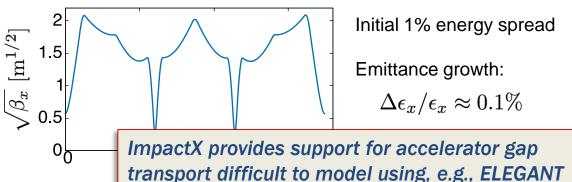
Collider interaction point modeling using WarpX:

- collaboration with SLAC, CEA Saclay
- benchmarked against GUINEA-PIG

WarpX simulation of beam-beam crossing at the interaction point of the ILC

See next talk by A. Formenti


Beam transport challenges for a laser plasma acceleration collider:


- Focusing of beams with large energy spread
- Compact transport plasma lenses for focusing
- Preservation of beam emittance (100's of stages)
- Insensitivity to beam jitter and pointer errors

See Advanced Accelerator Concepts 2 session: this afternoon

Exploring gap transport designs using ImpactX:

- collaboration with HALHF group (Univ. Oslo)
- apochromatic transport concept
- transversely-tapered plasma lens concept

- C. Lindstrom and E. Adli, Phys. Rev. Accel. Beams 19, 071002 (2016)
- C. Lindstrom, EuroNNAc Special Topics Workshop 2022 (2022)
- C. Lindstrom et al incl. A. Huebl & C. Mitchell, paper in preparation

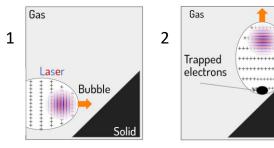
See talks on HALHF at this workshop

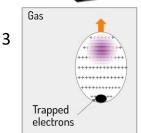
BLAST codes also cover plasma-based collider modeling from source to interaction point

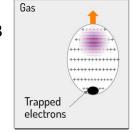
Interaction Point

A success story of a multidisciplinary, multi-institutional team!

BLAST codes also cover plasma-based collider modeling from source to interaction point




Generation


Acceleration & Transport

Interaction Point

Two-stage injection+acceleration w/ plasma mirror

2nd stage

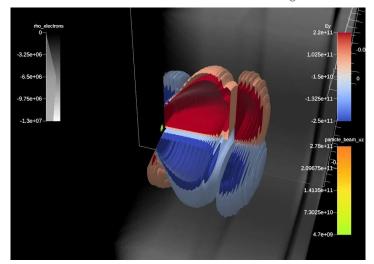
1st stage Interaction with the plasma mirror **0.5 nC** (peak) dQ/dE[pC/MeV] 12 MeV **1.7 nC** (total)

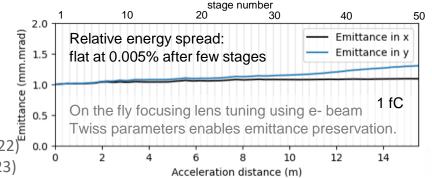
FWHM

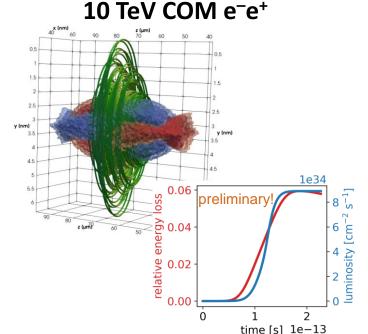
P5 Report: Exploring the Quantum Universe (2023) J-L Vay et al., ISAV20 Keynote (2020) & PoP 28.2, 023105 (2021)

E[MeV]

116 150

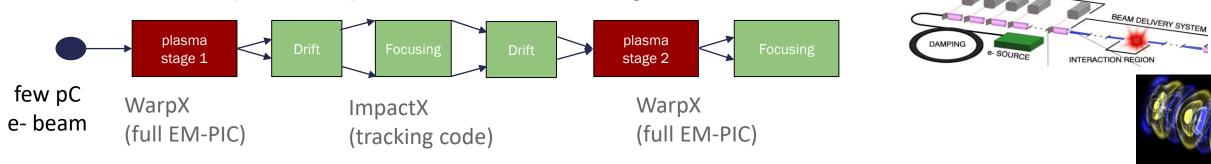

L Fedeli, A Huebl et al., SC22, ACM Gordon Bell Prize for WarpX (2022)


WarpX ECP MS FY23.1 & FY23.2 (2023); T Barklow et al., JINST (2023)

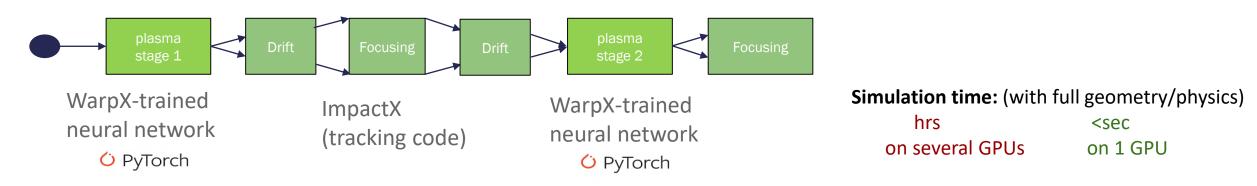

A Ferran Pousa et al., IPAC23, TUPA093 & PRAB (2023); CB Schroeder et al., JINST (2023)

50 Multi-GeV LPA Stages in 3D

Ascent VTK-m In Situ Visualization of the first 15 stages:

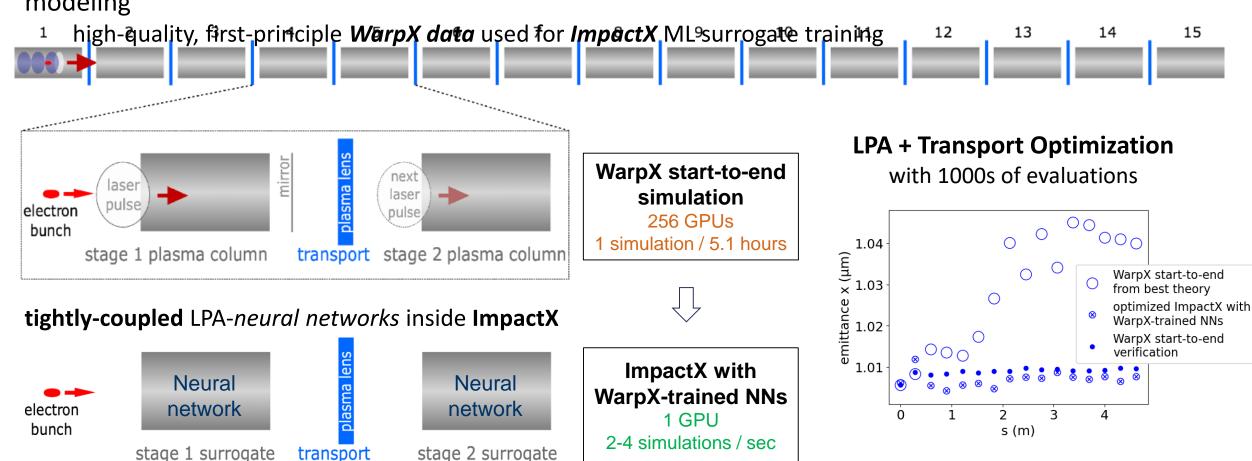

WarpX can now simulate flat, spherical, round and asymmetric beams in linear colliders:

ILC, C³, wakefield, HALHF, ... Next are more QED physics & circular colliders: FCC-ee, Muons


We also explore the training of ML surrogate models to speed-up simulations

• In a given lattice, some elements can be more **computationally-expensive** to model.

Extreme example: laser-plasma acceleration stages



<u>Under certain conditions</u> (here: negligible collective effects, specific range of parameters),
 computationally-expensive elements can be replaced by **ML models**, trained over **past simulations**.

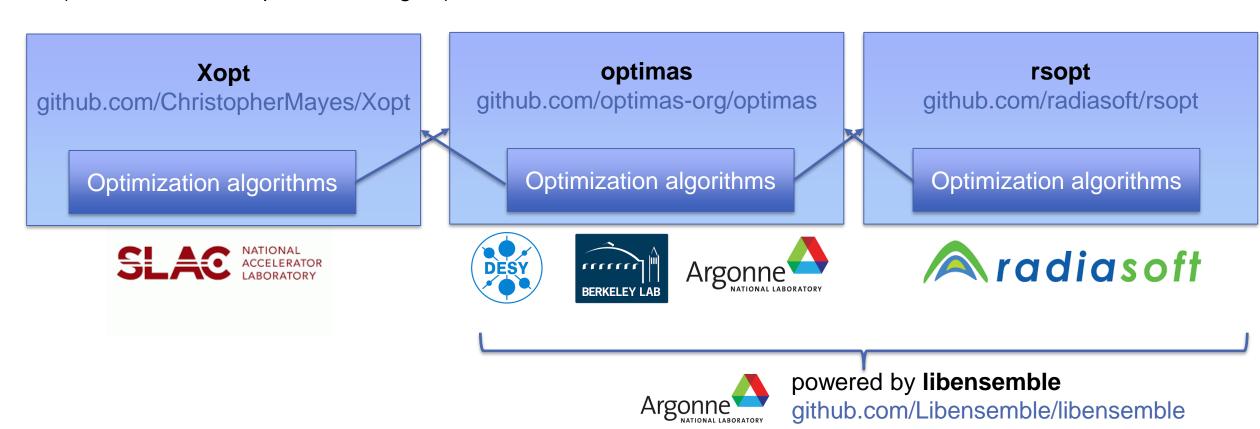
We Exploit our High-Quality HPC Data for ML-Boosted Collider Design

Central BLAST Code Interoperability: Combine Plasma & RF Accelerator Elements for start-to-end modeling

Summary & Outlook

- Berkeley Lab has a long history in high performance modeling of particle accelerators
- We are leading the Beam, pLasma & Accelerator Simulation Toolkit (BLAST)
 - o a coordinated effort that develops an integrated suite for start-to-end modeling of colliders
 - o 80+ multidisciplinary team of contributors from labs, universities & private sector
 - leverages unique technology from the US DOE Exascale Computing Project that enables codes to be built on a common core that enables efficient simulations on CPUs and GPUs
 - o common Python front-end enables user steering and direct coupling with optimization & AI/ML
- We are offering to use the new set of tools in support of the modeling of any type of future collider: Higgs factory, 10 TeV parton, muon, plasma-based, ...
- Feel free to use and contribute: https://blast.lbl.gov/

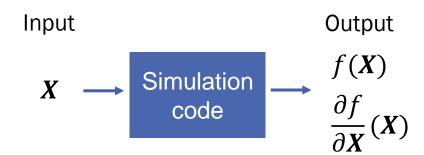
Questions?



We are fostering interoperability across open-source optimization software.

 Several open-source optimization frameworks are being used in the accelerator community (each with their respective strengths)

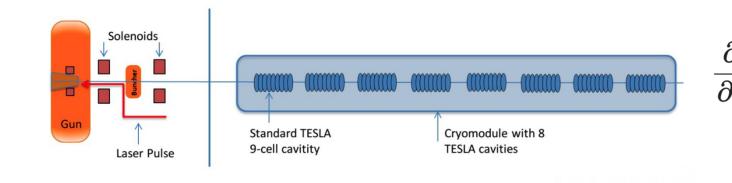
Ongoing efforts by the developers to standardize optimizers and foster interoperability.



Even tighter ML integration can be achieved with differentiable simulations

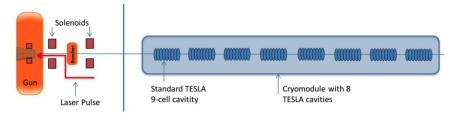
Regular simulation code

Input Output $X \longrightarrow Simulation code$


Differentiable simulation code

Input: accelerator parameters

$$m{X} = egin{pmatrix} B_{solenoid} \ arphi_{RF\ cavity} \ E_{RF\ cavity} \ \sigma_{beam,i} \end{pmatrix}$$

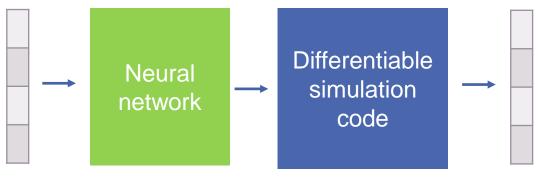

$$f=\epsilon_{\perp}$$

$$egin{aligned} \overline{\partial B_{solenoid}} \ \overline{\partial \epsilon_{ot}} \ \overline{\partial arphi_{RF\ cavity}} \ \overline{\partial arphi_{RF\ cavity}} \ \overline{\partial E_{RF\ cavity}} \ \overline{\partial arphi_{beam,i}} \ \end{pmatrix}$$

_

Differentiable codes have several advantages.

- Sensitivity studies
 - $\frac{\partial f}{\partial x}$ quantifies how sensitive the output is to the input.


- Optimization in high-dimensional space (e.g. of accelerator designs) $\frac{\partial f}{\partial x}$ can be used in **gradient-based** optimizers, which often converge faster
- Allows training of a neural network that is combined with a differentiable code

Traditional training of neural network

Input/output pairs, from a data set

Training of neutral network <u>combined</u> with a code

Example: R. Roussel et al., Phase Space Reconstruction from Accelerator Beam Measurements Using Neural Networks and Differentiable Simulations, PRL (2023)

We are exploring frameworks for differentiable codes.

- Several algorithms are available to make a code differentiable. e.g.
 J. Qiang, Differentiable self-consistent space-charge simulation for accelerator design, PRAB (2023)
- Several efforts to build differentiable accelerator simulation codes, based on auto-differentiation frameworks.
 - o pytorch
 Cheetah: according code based on pytorch
 github.com/desy-ml/cheetah

Julia
 Bmad-Juljulia
 osal to implement Bmad algorithms in Julia
 github.com/bmad-sim

Enzyme AD
 Takes existing code and makes it auto-differentiable at compile time.
 Could be leveraged to make BLAST codes (ImpactX, WarpX, ...) differentiable.

