

Beamstrahlung backgrounds in ILD at linear (ILC) and circular (FCCee) colliders

Daniel Jeans / KEK

LCWS2024

1

Beamstrahlung : many low $p_T e^+ e^-$ pairs produced in each bunch crossing

beam backgrounds : usually small $p_T \rightarrow$ particles do not reach TPC directly

X0 Y= 0.001 [cm]

Machine-Detector Interface

is significantly different @ ILC and FCCee

	ILC	FCCee
crossing angle	14 mrad	30 mrad
L* [distance from IP to last accel focusing quadupole magnet]	4.1 m	2.0 m
detector solenoid	3.5 T	2.0 T
additional B-fields	anti-DID (?)	- compensating - screening

field maps

beamstrahlung: many very low p_T e+e- created in bunch collisions

very different bunch structure, materials and fields in the forward region \rightarrow major effect on beamstrahlung backgrounds ?

GuineaPig : program to simulate beamstrahlung

beamstrahlung pairs @ ILC-250 (from ILD/Mikael Berggren) FCCee-91, FCCee-240 (from FCCee/Andrea Ciarma)

simulate in various DD4hep ILD detector models:

using ddsim/DD4hep/Geant4

some special parameters to correctly track low p_T particles

ILD @ ILC : uniform 3.5T uniform 2.0T field map with and without anti-DID

ILD @ FCCee : uniform 2.0T field map for central region

MC particle endpoints in 100 BX

ILC250 beamstrahlung

ILC-like detector

ILC250 beamstrahlung

FCC-like detector

FCC-240 beamstrahlung

FCC-like detector

100 bunch crossings

ILD_I5_v11y @ FCCee-91

ILD 15 v03 @ ILC-250

estimate number of **primary ions** produced in the TPC per bunch crossing \rightarrow geant4 energy deposit / effective ionisation potential of Ar [26 eV]

			FCCee-91	FCCee-240	ILC-250
model	B-field [T]	MDI	thous	and ions / bunch	n crossing
			mean \pm RMS		
ILD_15_v02	3.5 (uniform)	ILC	6.5 ± 19.9	14 ± 14	960 ± 150

large variations between bunch crossings

beamstrahlung much weaker @ FCCee

 \rightarrow bunches less focused

estimate number of primary ions produced in the TPC per bunch crossing

			FCCee-91	FCCee-240	ILC-250
model	B-field [T]	MDI	thous	and ions / bunch	crossing
				mean \pm RMS	5
ILD_15_v02	3.5 (uniform)	ILC	6.5 ± 19.9	14 ± 14	960 ± 150
ILD_15_v02_2T	2.0 (uniform)	ILC	6.9 ± 11.1	15 ± 11	4700 ± 300

reducing field to 2T has modest effect at FCCee, large effect at ILC estimate number of primary ions produced in the TPC per bunch crossing

			FCCee-91	FCCee-240	ILC-250
model	B-field [T]	MDI	thousa	and ions / bunch	crossing
				mean \pm RMS	
ILD_15_v02	3.5 (uniform)	ILC	6.5 ± 19.9	14 ± 14	960 ± 150
ILD_15_v02_2T	2.0 (uniform)	ILC	6.9 ± 11.1	15 ± 11	4700 ± 300
ILD_15_v03	3.5 (map)	ILC	5.7 ± 7.9	14 ± 11	1100 ± 200
ILD_15_v05	3.5 (map, anti-DID)	ILC	0.6 ± 1.5	3.7 ± 9.7	450 ± 110

anti-DID reduces TPC background by factor ~2 at ILC-250 4~10 at FCCee

			FCCee-91	FCCee-240	ILC-250
model	B-field [T]	MDI	thous	and ions / bund	ch crossing
				mean \pm RM	4S
ILD_15_v02	3.5 (uniform)	ILC	6.5 ± 19.9	14 ± 14	960 ± 150
ILD_15_v02_2T	2.0 (uniform)	ILC	6.9 ± 11.1	15 ± 11	4700 ± 300
ILD_15_v03	3.5 (map)	ILC	5.7 ± 7.9	14 ± 11	1100 ± 200
ILD_15_v05	3.5 (map, anti-DID)	ILC	0.6 ± 1.5	3.7 ± 9.7	450 ± 110
ILD_15_v11β	2.0 (uniform)	FCCee	390 ± 120	1000 ± 170	110000 ± 2400
ILD_15_v11γ	2.0 (map)	FCCee	270 ± 100	800 ± 140	100000 ± 1900

FCCee MDI system induces ~50x increase in TPC activity compared to ILC

detailed description of field has modest effect with FCCee MDI

			FCCee-91	FCCee-240	ILC-250
model	B-field [T]	MDI	thous	and ions / bund	ch crossing
			mean \pm RMS		
ILD_15_v02	3.5 (uniform)	ILC	6.5 ± 19.9	14 ± 14	960 ± 150
ILD_15_v02_2T	2.0 (uniform)	ILC	6.9 ± 11.1	15 ± 11	4700 ± 300
ILD_15_v03	3.5 (map)	ILC	5.7 ± 7.9	14 ± 11	1100 ± 200
ILD_15_v05	3.5 (map, anti-DID)	ILC	0.6 ± 1.5	3.7 ± 9.7	450 ± 110
ILD_15_v11β	2.0 (uniform)	FCCee	390 ± 120	1000 ± 170	110000 ± 2400
ILD_15_v11γ	2.0 (map)	FCCee	270 ± 100	800 ± 140	100000 ± 1900

"realistic" situations : a few 100k \rightarrow 1M primary ions / BX

ILC and FCCee are similar

TPC integrates over many collisions; maximum ion drift time ~ 0.44 s

roughly estimate number of primary ions in the TPC volume (~42 m³) at any time, taking account of different collision rates

number of ions ~ primary ions/BX * BX freq * max drift time * 50% [some ions already reached cathode]

Collider	FCCee-91	FCCee-240	ILC-250
Detector model	ILD_15_v11γ	ILD_15_v11 γ	ILD_15_v05
average BX frequency	30 MHz	800 kHz	6.6 kHz
primary ions / BX	270 k	800 k	450 k
primary ions in TPC at any time	$1.8 imes 10^{12}$	1.4×10^{11}	$6.5 imes 10^8$
average primary ion charge density nC/m ³	6.8	0.54	0.0025

primary ion density in TPC: 2500 times higher at FCCee-91 than ILC-250 200 times higher at FCCee-240 than ILC-250 how does this compare to other sources of primary ionisation?

e⁺ e⁻ → q q @ 91 GeV : ~1 M primary ions per event @ ~50 kHz [FCCee]
→ 10¹⁰ primary ions in TPC at any time
cf. 2x10¹² from beamstrahlung @ FCCee-91

 $e^+ e^- \rightarrow q q @ 91 \text{ GeV}$:

primary ions give rise to maximum drift distortions in R-phi of ~100 μm seem stable @ few-micron level

beamstrahlung background seems ~200 times more severe than $e^+ e^- \rightarrow q q$

using naive scaling, maximum distortions due to beamstrahlung (primary ions only) \rightarrow 20 mm

18

n.b. only primary ions considered

Figure 7.7: Average space charge density for Ne-CO₂-N₂ (90-10-5), $R_{int} = 50$ kHz and $\varepsilon = 20$. assumed ion back flow factor ε : 20 secondary ions / primary

```
20~120 fC/cm<sup>3</sup> \rightarrow cm-level distortions
```


TPC at FCCee91 with IBF of 3~5 \rightarrow similar space-charge as at ALICE O(1~10) cm max distortions consistent with our "first-principles" estimate

Summary

TPC background from beamstrahlung: same order **per BX** at ILC250 and FCCee

interplay between stronger beamstrahlung @ ILC more intrusive MDI @ FCCee

average BX frequency: **4.5k times higher at FCCee** \rightarrow TPC integrates over many more BX

TPC ions from **beamstrahlung** dominate those from $ee \rightarrow qq$ @ FCCee-91

TPC at FCCee-91 with IBF~4 looks similar to ALICE-TPC

backup

FCCee-240

log10 (theta [rad])

5: Pair backgrounds at ILC-250, FCC-91 and FCC-240 in different detector models: distribution in radius and z of the endpoint of all MC particles, integrated over 100 BX. Top row: ILC detector variants at ILC-250; middle row: FCC-ee detector variants in the ILC-250 environment (unrealistic, shown for comparison only); bottom row: FCC-ee detector variant at FCC-91/240.

adus

https://indico.cern.ch/event/1203316/timetable/#5-fcc-accelerator-status-and-r

Figure 8: Radial dependence of the primary ion charge density induced by beamstrahlung in a single BX in the realistic collider/detector combinations.

Figure 9: Distribution in z of the position of the first simulated interaction which gave rise to a TPC hit. ILD_ $15_v11\gamma$ detector model, 100 BX of pair background at FCCee-91.

			FCCee-91	FCCee-240	ILC-250
model	B-field [T]	MDI	thousand ions / bunch crossing		
				mean \pm RM	1S
ILD_15_v02	3.5 (uniform)	ILC	6.5 ± 19.9	14 ± 14	960 ± 150
ILD_15_v02_2T	2.0 (uniform)	ILC	6.9 ± 11.1	15 ± 11	4700 ± 300
ILD_15_v03	3.5 (map)	ILC	5.7 ± 7.9	14 ± 11	1100 ± 200
ILD_15_v05	3.5 (map, anti-DID)	ILC	0.6 ± 1.5	3.7 ± 9.7	450 ± 110
ILD_15_v11β	2.0 (uniform)	FCCee	390 ± 120	1000 ± 170	110000 ± 2400
ILD_15_v11γ	2.0 (map)	FCCee	270 ± 100	800 ± 140	100000 ± 1900
	removing E	BeamCal's	graphite lay	er	
ILD_15_v03	3.5 (map)	ILC			1300 ± 170
ILD_15_v05	3.5 (map, anti-DID)	ILC			590 ± 120
			bunch crossing frequency		
			30 MHz	800 kHz	6.6 kHz

~20% effect

imagine we could use ILC-MDI at FCCee-91 (completely unrealistic...)

FCCee-91 Collider FCCee-91 FCCee-240 ILC-250 ILD 15 v05 Detector model ILD_ $15_v11\gamma$ ILD_15_v11 γ ILD_15_v05 30 MHz 800 kHz 6.6 kHz average BX frequency 30 MHz primary ions / BX 270 k 800 k 450 k 0.6 k $1.8 imes 10^{12}$ 1.4×10^{11} 6.5×10^{8} primary ions in TPC at any time 4 x 10⁹ average primary ion charge density nC/m^3 6.8 0.0025 0.015 0.54

"best case"

include a "W mask" ?

