LCWS2024 International Workshop on Future Linear Colliders

Beam-induced backgrounds at the Cool Copper Collider

July 10, 2024

Dimitris Ntounis¹, Elias Mettner³, Lindsey Gray², Caterina Vernieri¹

¹Stanford University &

SLAC National Accelerator Laboratory

²Fermilab National Accelerator Laboratory

³University of Wisconsin-Madison

Beam-Beam interactions at e+e- colliders

- Nm-sized beams → high charge densities at the IP → interactions between bunches → production of secondaries, that collectively constitute the **beam**induced background (BIB).
- BIB particles are by-products of photons radiated when the two bunches intersect at the IP. Those photons are called **Beamstrahlung (BS).**
- Dominant processes for Higgs Factories:

e⁺e⁻ Pairs

Manny .

Beamstrahlung

Beam-Beam interactions at linear e+e- colliders

• The effects of beam-beam interactions on the experiments can be split in **two categories**:

Physics Analyses

- BS widens the luminosity spectrum considerably
- Enables collisions at lower \sqrt{s}
- Softens initial state constraints -> important for kinematic fits
- Need to unfold the luminosity spectrum for measurements.
- Photoproduced jets affect clustering performance, JER, JES

Detector Performance

- High flux in vertex barrel and forward sub detectors
- Increase in detector occupancy → might miss interesting Physics (HS) events!
- Impacts detector design decisions, e.g. radius of 1st vertex barrel layer, buffer depth etc.

July 10th, 2024

PRAB 27, 061001

Beam-Beam interactions at linear e+e- colliders

• The effects of beam-beam interactions on the experiments can be split in **two categories**:

Physics Analyses

- BS widens the luminosity spectrum considerably
- Enables collisions at lower \sqrt{s}
- Softens initial state constraints -> important for kinematic fits
- Need to unfold the luminosity spectrum for measurements.
- Photoproduced jets affect clustering performance, JER, JES

Detector Performance

PRAB 27, 061001

SLAC

Focus on this today

- High flux in vertex barrel and forward sub detectors
- Increase in detector occupancy → might miss interesting Physics (HS) events!
- Impacts detector design decisions, e.g. radius of 1st vertex barrel layer, buffer depth etc.

July 10th, 2024

Pair background at C³

The produced incoherent pairs are mostly at low p_T and get significantly deflected in the strong magnetic field (~T) of the detector. Thus, most of them are "washed" away from the Interaction Region (IR) within the beam-pipe \rightarrow **pair background envelope**

-SLAC 🛞

- At C³, ~ 0.1 % or ~ 40 particles/BX) reach the detector and increase its occupancy \rightarrow might compromise the stringent precision requirements
- The **vertex barrel detector**, which is the closest to the IP (r=14 mm for the 1st layer of SiD) is mostly affected.

Pair background at C³

- Detector occupancy : fraction of dead cells, i.e. cells with a number of hits ≥ the available number of buffers (called buffer depth).
- In the current readout strategy for C³, hits will be stored in the buffer system and read out after each bunch train.
- We estimated the occupancy by running full detector simulation for SiD in dd4hep for a full C³ bunch train (133 BXs).
 - For ILC detectors, an occupancy upper limit of 10^{-4} and buffer depth of 4 has been proposed.

Occupancy in the vertex barrel as a function of assumed buffer depth for C^{3} -250.

٠

SLAC

Pair background at C³

- Detector occupancy : fraction of dead cells, i.e. cells with a number of hits ≥ the available number of buffers (called buffer depth).
- In the current readout strategy for C³, hits will be stored in the buffer system and read out after each bunch train.
- We estimated the occupancy by running full detector simulation for SiD in dd4hep for a full C³ bunch train (133 BXs).
- For ILC detectors, an occupancy upper limit of 10^{-4} and buffer depth of 4 has been proposed.
- Occupancy in the SiD vertex barrel for the C³ beam structure is well within the limits set for ILC.

Occupancy in the vertex barrel as a function of assumed buffer depth for C^{3} -250.

SLAC

Time distribution within each BX for C³

- Time distribution of hits in the SiD vertex barrel within a single BX.
- The normalization corresponds to a full bunch train for C³-250.

٠

٠

٠

- Most hits contained in time within the bunch spacing.
- The secondary peak at ~20-25 ns is due to backscattering from the BeamCal.

Dimitris Ntounis

-SLAC

Time distribution of hits in vtx barrel per unit time for a full C³-250 train: on average, we anticipate ~ 90 hits/ns in the vertex barrel detector.

SLAC

Time distribution of hits in vtx barrel per unit time for a full C³-250 train:

Dimitris Ntounis

SLAC & Stanford University

SLAC

Dimitris Ntounis

•

•

٠

٠

SLAC & Stanford University

July 10th, 2024

SLAC

Hadron photoproduction at C³

- Hadrons from beamstrahlung have a rate $\sim \mathcal{O}(10^5)$ smaller that incoherent pairs, but are more central and lead to higher-multiplicity final states \rightarrow impact reconstruction.
- PYTHIA8 used above $\sqrt{s_{\gamma\gamma}} \simeq 10 \text{ GeV}$, dedicated generator by T. Barklow below that
- Technical progress on migrating from PYTHIA5.7 and using latest Whizard and CIRCE versions → **in the process helping resolve bugs in CIRCE**
- Presently generating the appropriate bkg mixture from estimated virtual photon flux.
- Results so far with **full SiD simulation indicate** that we are within the limits set for ILC.
- See Lindsey's talk at C³ workshop for more details

Halo muon machine background at C³

Muons from beam interactions at the collimators were an important background at SiD and where taken into account for ILC detector studies

- Trying to reproduce latest ILC results using existing MUCARLO files for ILC BDS (*thanks to Daniel Jeans*) and SiD geometry \rightarrow Qualitative agreement, but quantitative differences to be understood.
- **MUCARLO**: not well documented and no longer maintained \rightarrow need a new framework to provide machine background muons for LC detectors.
- We are in the progress of evaluating the potential of FLUKA as an alternative to MUCARLO.

Ideas/collaboration on how to move forward are more than welcome!

Dimitris Ntounis

SLAC & Stanford University

A.Schuetz's thes MuonEndca Number of hits MuonBarrel EcalBarrel 10^{4} EcalEndcar LumiCa 10 BeamCa SiVertexBarrel SiVertexEndcap SiTrackerBarrel SiTrackerEndcap 10 10 ⊨ 10 15 20 25 30 35 5 40 45 Hit time [ns] Our results (sidloi3 geometry) [work done by Kenny Jia] Hit time distribution ECalEndcapHit HCalBarrelHit HCalEndcapH AuonEndcanHite umiCalHite ReamCalHite SiVertexBarrelHits SiVertexEndcapHit SiTrackerBarrelHits SiTrackerEndcapHit 10^{2} 10 20 15 25 45 July 10th, 2024

Conclusions

- We have simulated and validated the leading BIB for C³, incoherent pair production, and are finalizing the simulation for the hadron photo production.
- Ongoing effort for out-of-time pileup mixing and evaluating effect of background occupancy on tracking performance.
- Larger community effort is necessary to get a reliable simulation tool for muon machine background for all colliders.
- The C³ beam configuration and time-structure has been validated to be compatible with ILC-like detectors.
- Currently in the process of preparing manuscript to document our results and share with the community.

Thank you for your attention!

For more information on C³, visit: https://web.slac.stanford.edu/c3/

Conclusions

- We have simulated and validated the leading BIB for C³, incoherent pair production, and are finalizing the simulation for the hadron photo production.
- Ongoing effort for out-of-time pileup mixing and evaluating effect of background occupancy on tracking performance.
- Larger community effort is necessary to get a reliable simulation tool for muon machine background for all colliders.
- The C³ beam configuration and time-structure has been validated to be compatible with ILC-like detectors.
- Currently in the process of preparing manuscript to document our results and share with the community.

SLAC

Thank you for your attention!

For more information on C³ ··· https://web.slac.st-Questions?

Backup

Backup

The Cool Copper Collider

- Cool Copper Collider (C³): newest proposal for a linear e⁺e⁻ collider relying on normal conducting copper accelerating technology, with a novel cavity design that utilizes distributed coupling.
- cryogenic temperature operation (LN2 at 77K), lower surface fields and higher accelerating gradients
 - \rightarrow cost-effective, compact 8 km footprint.

Electric field magnitude for equal power from RF manifold

Innovations

- Optimized design of RF cavities to minimize breakdown.
- Small aperture, distributed coupling from a common RF manifold → possible with precision CNC

75 MeV/m @250 GeV 120 MeV/m @550 GeV

JINST 18 P07053

Dimitris Ntounis

The Cool Copper Collider - Physics

- C³ targeted at operations at 250 GeV (*ZH* mode) and 550 GeV (*ZHH* mode only possible for linear colliders).
- The targeted inst. luminosity of $1.3(2.4) \times 10^{34}$ cm⁻² s⁻¹ at 250 (550) GeV would allow 2 (4) ab⁻¹ of statistics after **10 years at each energy**.
- It's important to evaluate and optimize emissions due to construction and operation for the entire run time of the collider.

Parameter	Value			
\sqrt{s} (GeV)	250	550		
Luminosity ($cm^{-2} sec^{-1}$)	1.3×10^{34}	2.4×10^{34}		
Number of bunches per train	133–200	75		
Train repetition rate (Hz)	120	120		
Bunch spacing (ns)	5.3–3.5 ^a	3.5		
Site power (MW)	150	175		
Beam power (MW)	2.1	2.45		
Gradient (MeV/m)	70	120		
Geometric gradient (MeV/m)	63	108		
rf pulse length (ns)	700	250		
Shunt impedance $(M\Omega/m)$	300	300		
Length (km)	8	8		

•

•

Dimitris Ntounis Target beam parameters for C^3 . SLAC & Stanford University

JINST 18 P07053

SLAC 🛞

The Cool Copper Collider - Physics

- C³ targeted at operations at 250 GeV (*ZH* mode) and 550 GeV (*ZHH* mode only possible for linear colliders).
- The targeted inst. luminosity of $1.3(2.4) \times 10^{34}$ cm⁻² s⁻¹ at 250 (550) GeV would allow 2 (4) ab⁻¹ of statistics after **10 years at each energy**.
- It's important to evaluate and optimize emissions due to construction and operation for the entire run time of the collider.

Parameter	Value			
\sqrt{s} (GeV)	250	550		
Luminosity ($cm^{-2} sec^{-1}$)	1.3×10^{34}	2.4×10^{34}		
Number of bunches per train	133–200	75		
Train repetition rate (Hz)	120	120		
Bunch spacing (ns)	5.3–3.5 ^a	3.5		
Site power (MW)	150	175		
Beam power (MW)	2.1	2.45		
Gradient (MeV/m)	70	120		
Geometric gradient (MeV/m)	63	108		
rf pulse length (ns)	700	250		
Shunt impedance $(M\Omega/m)$	300	300		
Length (km)	8	8		

•

•

JINST 18 P07053

-SLAC 🛞

Dimitris Ntounis Target beam parameters for C^3 . SLAC & Stanford University

The Cool Copper Collider - Power Optimizations

PRAB 27, 061001

- Changes in flat-top duration, bunch spacing and rep. rate can be combined to improve the luminosity per unit power up to 3x!
- The energy consumption throughout the entire lifetime of the machine can be reduced significantly!

~700ns

~8ms

Requires additional studies to evaluate feasibility on the accelerator (high-gradient tests with double flat top) and detector (evaluation of occupancy tolerances) side!

	Lu	minosity f	or two	beam p	arameter sets	Fotal site powe	er consumption	\mathcal{L}	'P _{site}
Scenario	Flat top (ns)	Δt_b (ns)	n _b	f_r (Hz)	$\frac{\mathcal{L} (10^{34} \text{ c}^{3})}{\text{C}^{3}\text{-}250 (\text{PS1})}$	$cm^{-2} s^{-1})$ C ³ -250 (PS2)	P_{site} (MW) Both scenarios	(10 ³⁴ cm ⁻² PS1	² s ⁻¹ (GW) ⁻¹ PS2
Baseline Double flat top Halve bunch spacing Combined-half repetition rate Combined-nominal repetition rate	700 1400 700 1400 1400	5.26 5.26 2.63 2.63 2.63	133 266 266 532 532	120 60 60 60 120	1.35 1.35 1.35 2.70 5.40	1.90 1.90 1.90 3.80 7.60	150 125 129 154 180	9.0 10.8. 10.5 17.5 30.0	12.7 15.2 14.7 24.7 42.2
Beam configuration scenari of b Dimitris Ntounis	os for C ³ , wh unches per t	ich incluc rain n _b , ar Sl	le mo nd/or t _AC & S	dification the train Stanford U	ns in the bunc repetition rate Iniversity	h spacing Δt_{b}	the number July 10th,	Up to £ / P _s 2024	~3x _{ite} gain! 22

Beam-Beam interactions at e+e- colliders

- In addition to incoherent pair production, which stems from interactions of individual, real or virtual, photons, e⁺e⁻ pairs can also be produced through the following mechanisms:
 - Coherent pair production: interaction of BS photon with the collective EM field of the beams \rightarrow exponentially suppressed for $\langle \Upsilon \rangle \lesssim 0.5$
 - Trident cascade: interaction of virtual photon with the collective EM field of the beams \rightarrow non-negligible for $\langle \Upsilon \rangle > 1$
- Those backgrounds are negligible for HFs, but become significant for high Beamstrahlung advanced-accelerator-concept (<u>AAC</u>) colliders, e.g. WFA-based.

Simulation of Beam-Induced Background

- For the simulation of BIB at e+e- colliders, two simulation tools have traditionally been used, <u>GUINEA-</u>
 <u>PIG</u> and <u>CAIN</u>.
- Both of them are Particle-In-Cell (PIC) codes that rely on the description of the colliding bunches through an ensemble of macroparticles, distributed on a 3D grid. Poisson solvers are used to update the EM field and charge/current density at each time step.
- QED processes are simulated on top of the EM solvers.
- More modern simulation tools, such as <u>WarpX</u>, are also being adapted to serve the purposes of background simulations for Higgs factories → see J.L. Vay's <u>talk</u> at the recent C3 workshop

Simulation of Beam-Induced Background

For all C³ studies, we use well-established and/or modern software tools, to guarantee modularity, preservation and reusability of our code:

- For the simulation of beam-beam interactions, the tools GuineaPig++ and CAIN v2.4.2 have been used and their results cross-validated.
- For full detector simulation with GEANT4, **DD4hep** is used.
- The SiD detector geometry (02_v04) is ported from k4geo (lcgeo).

* Also: efforts with MUCARLO ongoing to simulate the halo muon background Dimitris Ntounis SLAC & Stanford University

-SLAC

Typical detector dimensions for e+e- colliders

Dimensions in cm

Layer	Inner radius	Outer radius	¢
	[mm]	[mm]	
1st	13	17	
2 nd	21	25	
3rd	34	38	
4th	46.6	50.6	
5th	59	63	

Vertex Barrel:

Barrel	Technology	Inner radius	Outer radius	z extent
Vertex detector	Silicon pixels	1.4	6.0	+/- 6.25
Tracker	Silicon strips	21.7	122.1	+/- 152.2
ECAL	Silicon pixels-W	126.5	140.9	+/- 176.5
HCAL	RPC-steel	141.7	249.3	+/- 301.8
Solenoid	5 Tesla SC	259.1	339.2	+/- 298.3
Flux return	Scintillator-steel	340.2	604.2	+/- 303.3
Endcap	Technology	Inner z	Outer z	Outer radius
Vertex detector	Silicon pixels	7.3	83.4	16.6
Tracker	Silicon strips	77.0	164.3	125.5
ECAL	Silicon pixel-W	165.7	180.0	125.0
HCAL	RPC-steel	180.5	302.8	140.2
Flux return	Scintillator/steel	303.3	567.3	604.2
LumiCal	Silicon-W	155.7	170.0	20.0
BeamCal	Semiconductor-W	277.5	300.7	13.5

https://pages.uoregon.edu/silicondetector/sid-dimensions.html

*SiD geometry version SiD_o2_v4 used in our simulations

Pair Background Envelopes

C³ - Our results

r vs z

Ċ

Dimitris Ntounis

-SLAC

Pair Background Envelopes

Results shown here correspond to $\sqrt{s} = 250 \text{ GeV}$, B = 5 T (uniform)

C³ - Our results

C

-SLAC

r vs z

Pair Background Envelopes

The pair background envelopes for C3 are well contained within the beam-pipe.

C

-SLAC

Pair background occupancy

ILC - Previous results

-SLAC

- Preliminary Studies indicate that the pair background particle flux is within the limits set in the SiD DOE Final Report: <u>https://www.osti.gov/biblio/1182602</u>
- Our estimate for the flux in the innermost layer of the vertex detector is :

0.043 hits/(ns · mm²) · (5.25 ns/BX) = **0.023 hits/mm²/BX**

• We are currently in the process of validating our results and repeating the studies for all subdetectors.

The highest hit rates and occupancies result from the estimated $0.03 \text{ hits/mm}^2/\text{ bunch crossing}$ for the innermost layer, for a bunch train pixel occupancy approaching 10 percent. The time information (i.e., bunch crossing number) reduces this occupancy to $<< 10^{-4}$ per pixel giving considerable headroom should occupancies be higher than expected.

Dimitris Ntounis

Comparison with other linear co

PRAB 27, 061001

particles/bunch train 104 104 104

of

Number 10³ 10²

 10^{1}

Number of particles/bunch train ⁰¹
⁰¹
⁰¹
⁰¹
⁰¹
⁰³
⁰¹

105

CLIC

Energy of incoherent pair particles

Time distribution of hits per unit time: on average, we anticipate ~ 90 hits/ns in the vertex barrel detector.

-SLAC

Time distribution over a train - vertex & tracker

Time distribution of hits per unit time in the various vertex and tracker subdetectors.

Dimitris Ntounis

SLAC & Stanford University

SLAC

Time distribution over a train - vertex barrel

Time distribution of hits per unit time and area: on average, we anticipate

~ $4.4 \cdot 10^{-3}$ hits/(ns \cdot mm²) $\simeq 0.023$ hits/mm²/BX in the 1st layer of the vertex barrel detector, within the limits set for SiD @ ILC.

Dimitris Ntounis

Beam Parameters related to timing

- **ILC:** One train every 200 ms (5 Hz) with 1312 bunches/train.
 - Each bunch is separated by 369 ns. In the remaining time until the next train arrives, the detector has to read out the analog signals and do the digital processing.
- C³: One train every 8.3 ms (120 Hz) with 133 bunches/train.
- Each bunch is separated by 5.25 ns.
 - In the remaining time until the next train arrives, the detector has to read out the analog signals and do the digital processing.
- **Comparison:** C³ will record *O*(10) times fewer bunches than ILC, leading to reduced occupancy. But, the readout will have to take place ~25 times faster.

Collider	NLC[16]	CLIC[10]	ILC[18]	C^3	C^3	
CM Energy [GeV]	500	380	250 (500)	250	550]
σ_{z} [μ m]	150	70	300	100	100	
β_x [mm]	10	8.0	8.0	12	12	
β_{y} [mm]	0.2	0.1	0.41	0.12	0.12	
ϵ_x [nm-rad]	4000	900	500	900	900	
$\epsilon_{\rm p}$ [nm-rad]	110	20	35	20	20	
Num. Bunches per Train	90	352	1312	133	75	
Train Rep. Rate [Hz]	180	50	5	120	120	
Bunch Spacing [ns]	1.4	0.5	369	5.26	3.5	

Caterina Vernieri et al 2023 JINST 18 P07053

ILC timing structure

308ns spacing

٠

٠

٠

Ongoing efforts

- The pair background might be the dominant BIB for C³, but other sources of background are also important and under study:
 - hadron photoproduction background $\gamma\gamma \rightarrow$ hadrons (Elias Mettner, Abdollah Mohammadi UWM, Lindsey Gray Fermilab)
 - Machine Induced Backgrounds: halo muon background (Kenny Jia, DN, CV Stanford & SLAC, LG - Fermilab), neutron background from beam dumps
 - Out-of-time pileup mixing and pileup overlay (LG Fermilab)

Dimitris Ntounis

SLAC & Stanford University

SLA