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Abstract

Characterizing the beam-plasma interaction in the plasma wakefield
accelerator, an essential ingredient for a potential linear collider or free-
electron laser represents a significant challenge for experimental
measurements. The typical dimensions involved in such diagnostic
systems are below one micron, with attendant femtosecond time-
resolution. Further, the plasma environment and the beam intensity
generally prevent insertable, destructive diagnostics. The most robust
window into this interaction is betatron radiation, which reveals beam
properties such as size, emittance, matching, and development of
instabilities. In this talk, we review the powerful new double-differential
spectrometer under development at UCLA that is to be installed at
FACET-Il. We discuss the unique optics of this Compton-based
spectrometer, which permits single shot measurements of incoming
betatron gamma spectra ranging from 0.2 to 30 MeV. We describe
significant progress in implementing machine learning techniques for
reconstructing the beam-plasma interaction physics.
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PWFA in the blowout regime

e Paradigm since early 1990’s: PWFA underdense "blowout” regime

* Beam ejects plasma electrons from beam region, forming uniform ion-filled bubble
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PWFA in blowout ideal for acceleration and ion focusing

Nearly all lInear collider PWFA development in blowout regime

-ZL& J. B. Rosenzweig, et al., Phys. Rev. A -- Rapid Comm . 44, R6189 (1991).




PWFA linear collider schematic layout
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* 25 GeV drive beam (~50 for future linear collider

e Other models such as HALHF under discussion
* Very high brightness beams undergoing strong focusing
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PWFA linear collider schematic layout
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HALHF layout

* 25 GeV drive beam (~50 for future linear collider
e Other models such as HALHF under discussion
* Very high brightness beams undergoing strong focusing
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The challenge of measuring beam properties
in applications - linear collider

 Very strong ion focusing
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* Beta function ,Beq =/ 2vk » 1. at 25 GeV, this is ~1 cm. Short
* With emittance of 1E-6 m-rad, this implies g, ~ 0.3 um

* Challenges in measurements
* Suboptical size
* Hostile plasma environment
* Beam intensity
* Measure accelerating beam with drive beam present

 Need non-destructive methods

* lon focusing is key; based on (usually) simple harmonic oscillations
* Betatron radiation gives plethora of information
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Betatron radiation mechanism

* Simple harmonic oscillations similar to undulator motion; period 4,

lon channel Laser or electron driver

Trailing £+++ ++++ +++++ f+++++\++
electron

Ag
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* Energy not conserved in motion (ignorable at high y)

* Amplitude (K;,) and polarization set by initial conditions (i.e. x = x;)

Betatron
radiation
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Betatron radiation spectra

e With small beam sizes (K,, < 1), one may have undulator spectra —
fundamental and harmonics

. . . e
* Spread in amplitudes can measure emittance! Ad, ;s =—
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* Large K, gives wiggler (synchrotron-like) radiation spectrum
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* This is the most commonly encountered situation
1

* The critical the critical energy increases only as y 4.
e Spectrum is similar for all energies in PWFA collider
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Non-ideal behavior can be revealed in DDS

* Hosing/banana beam induces directional and enhanced radiation
* lon collapse dramatically changes and enhances beam radiation

* Positron propagation inherently nonlinear e e
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Measuring beam characteristics with
betatron radiation

-

Positrons
‘«/\

e

Very complex and challenging system A new
instrument is needed:

Double differential spectrometer



Novel Compton spectrometer for FACET-Il: CPT

* Based on Compton
scattering in converter wire

* Kinematic replica e-
* Gives double differential
spectrum (DDS)
* Compact (50 cm)

* Broad range
* Sextupole-like magnet
e 200 keV—-30 MeV
e Upper limit set by onset of
pair production

e Lower limit from new
approach
* Pixelated directional tungsten

collimator removes non-
replica electrons

* 500 keV -> 200 keV limit
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- Number of gammas incident = 1e10
- Total energy depositedl= 38.0 GeVI

50

100 150 200

{Aa v\ navieAadan fRi1a1m

ImMmm)



Installation at FACET-II

* Install in dump line downstream of IP

PAIR SPECTROMETER ALUMINUM AIR/VACUUM BEAM WINDOW
DIPOLE MAGNET COMPTON SPECTROMETER . / BEAM DUMP

6.0 METERS 3.2 METERS " GAMMA DETECTION CHAMBER

 Large vacuum box for CPT and pair spectrometer PEDRO (SFQED expt)
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How to use data? Machine learning analysis

e DDS data fed into ML model trained on simulation data
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e Results of beam size reconstruction robust even with 1D data

ML-Predicted Spot Sizes from Energy Spectra

expected
g g1 e actual .#.y"
Beam emittance, B e -° This is a dramatic
energy, also extracted :'% N .,:-"" improvement over
by ML analysis B .. r previous expts.
S o
£l
6 2l A é IB BI ‘h NATIONAL

Actual Spot Size (um) — =@ ACCELERATOR
UCLA P b NN\ 1 ABORATORY



Higher energy diagnostics: pair spectrometer

e At FACET-Il UCLA is also building a pair spectrometer (PEDRO) to
measure to 10 GeV y’s for SFQED. Hardware cohabitates with CPT

- Compton spectrometer

o Pair spectrometer
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Spin-off application: drive beam spectrometer

* To obtain a broad range spectrometer in “space-radiation simulator”
PWFA experiments at UCLA we are repurposing the sextupole
spectrometer magnet for 3-60 MeV use

-~ Initial energy

o 2o =6.47 cm

108 E P 2o =7.07cm
3 I

'1;;_.\ ! Zo = 7.44 cm

3 Zo =8.03cm

10° ‘ . ; ; ' :
20 30 40 50 60 70
Energy (MeV)

PWFA “stopped beam” spectrum Modified CPT magnet spectrometer

e Can this usefully be extended to ~25 GeV drive beam
* What is the effect on accelerating beam? Sextupole may permit small pert.
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Conclusions

* Betatron radiation gives key information for beam properties in
PWFA needed for collider performance

* Innovative new gamma-ray spectrometers under development and
commissioning (soon) at FACET-II

* Machine learning analysis methods show the way for reconstructing
beam properties

* A good start to build hardware and software tools for PWFA collider
beam measurements based on betatron radiation

* These tools are explained in a series of arXivand PRAB papers by Yaday, et al.
and Naranjo, et al.

* Much more work to be done
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