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INFN in-kind contribution to PIP-I

INFN LASA provided a novel RF design for the LB650 cavities, compliant

to Fermilab technical interfaces and specifications

INFN-LASA contribution will cover the needs of LB650 section:
» 2 proto cavities to validate processing and tech. transfer

* 38 SC cavities required to equip 9 cryomodules with 2 spares, delivered as

ready for string assembly.
* Qualification via vertical cold-test provided by INFN through a

qualified cold-testing infrastructure acting as a subcontractor
* Compliance to the PIP-1l System Engineering Plan
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PIP-II linac layout
800 MeV, 2 mA, H- beam, CW compatible

PIP-11 LB650 Project Specifications

Acc. Gradient 16.9 MV/m
Qo 2.4 1010
RF rep rate 20 Hz to CW
Beta 0.61
. Acceptance
INFN Deliverable Components
Early Date
LB Jacketed CaV|t|e§ (Batch 1 - Qty JUN-2025
4) and Pre-Series (Qty 2)

LB Jacketed Cavities (Batch 2 - Qty 4) Aug-2025
LB Jacketed Cavities (Batch 3 - Qty 4) Oct-2025
LB Jacketed Cavities (Batch 4 - Qty 4) Dec-2025
LB Jacketed Cavities (Batch 5 - Qty 4) Feb-2026
LB Jacketed Cavities (Batch 6 - Qty 4) Apr-2026
LB Jacketed Cavities (Batch 7 - Qty 4) Jun-2026
LB Jacketed Cavities (Batch 8 - Qty 4) Sep-2026
LB Jacketed Cavities (Batch 9 - Qty 4) Oct-2026
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LB650 on-going activities at INFN

R&D towards high Q, and preparation for transfer to industry e o R B e b
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* Prototypes to develop proper surface treatments R w——————

e B61-EZ-001 jacketed and tested at FNAL
* B61-EZ-002 jacketed and tested at LASA‘
* B61S-EZ-001 single cell treated and tested at FNAL ° “Soes o

* B61S-EZ-002 treated, jacketed and tested at LASA A T T Bs
 B61S-EZ-003 single cell processed and tested at LASA % ’
E,.. [MV/m]
* Prepare LASA test station for high Q, measurements Mid-T bake recipe (3h @300°C)
* Lower residual magnetic field, Helmholtz coils

. Dlagnost|csto understand performance limitations -_
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RF system for 650 MHz cavities:

The INFN LASA vertical test facility

Cryostat: ¢ 700 mm, 4.5 m length, losses<1 W @ 4 K
Can host f>500 MHz cavities

650 W UHF power amplifier
Input power coupled by high-Q antenna (Q; = 1019)

Transmitted power1r111easured by pickup antenna * temperature sensors, He vapor pressure reading to
With Qext = 3 - 10 control He-bath temperature, LHe level probes so to
PLL to lock cavity frequency (due to high-Q, cavity monitor LHe transfer
bandwidth is <0.1 Hz . :
) e Approximately 2500 liters of LHe @1Atm needed to
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LASA INFN VTS flux expulsion scenario

e Sub-cooling system:
* Cooling power:~70 W @ 2 K
* Lowest temperature 1.5 K. oo
e Cooldown rate now limited to about 1 K/min

* Residual field:
* With mu-metal inner shield: B, <10 mG " 200
» with cryoperm shield: 5 mG max expected 00 | b 0y borcon

3000 g
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Tipical trapped flux efficiency S = = of the order 87%
NC

assuming 0.4 nQ)/mG for baked niobium at 650 MHz: R, s = 4 nl trapped flux residual resistance



How to improve the cryostat for high-Q?

G * G isageometry factor and depends only upon cavity geometry
Qo= Ro(T) * R cavity surface resistance, depending on rf frequency, temperature and material parameters
S (penetration depth, electron mean free path, coherence length, bandgap)

Rs(T)=Rpcs(T)+ Rt s + Ry

R; 7 is the contribution of trapped magnetic flux and can be minimized with dedicated magnetic hygiene protocols.
Ref.=m-S-B
Trapped flux efficiency: depends upon External magnetic field: depends upon
VT across cavity length. Can be reduced / l \ shielding efficiency. Can be reduced
resorting to Helmholtz coils for active
field cancellation

v.wth improved de§|gn of LHe-transfer Trapped flux sensitivity: depends
lines, and employing local heaters to

upon material and treatment history.
offset the temoerature level L .
B Can be reduced by optimizing cavity
treatment (annealing and final baking
temperatures)
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Helmholtz Coils for field cancellation

* Active cancellation strategy: R, , Can be minimized by active
cancellation of the external field ‘with Helmoltz coils:
Bior = Bres + Bcoil(i) =0

for a given choice of the coil current i, being B,,;(i) = k- i
withk = 0.7 mG/mA at eq.

Field cancellation scheme

Transient —e—Fluxgate #1

20 —_—
) —+—Fluxgate #2 |
E 15 Helmoltz coils OFF : & : =)
@ B avg= 8.6 mG e
% " “g |
= 10 : B B61S-EZ-003 cavity |
s ¥ |Helmoltz coils ON: i /1
@ 5 Hli=-19.2 mA
E ! |Bavg=0
¥ iy S R E— . :
0 e — On PIP-II\ESS cavities VT insert:
'Q * 3 Fluxgates + 1 AMR installed on cavity equator
7 % | * Average value of field chosen as setpoint for coil
20 40 &0 O 100 120 140 10

time [s] * Near 9.2K, coil is turned on to cancel the field



Q,

Test on PIP-Il prototype cavity B61S-EZ-003

* Treatment history: 120 um EP + 3h @900°C in UHV + 40 um EP + 3h @300°C (mid-T bake)
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Test #1: error in field cancellation
due to SMA cables perturbating
Fluxgate readout

Test #2: after cables removal.
Efficient field cancellation with
correct Fluxgate readout
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B615-EZ-003 R, comparison

Educated guess: SMA cables
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B61S-EZ-003 Quench at different ext. fields

For a quench in an external field B, the expected increase in residual resistance is:

Rmag=0a-S-|B|

where a is a surface ratio (quench surface/overall RF surface)

while i:

An external B; is set with coils with RF OFF
RF ON: Cavity power rise until a quench occurs
A part of cavity surface goes NC from SC

Measurement protocol

B; is trapped in this region, changing residual
resistance to Rg(i) = Ry + R(i) = Ry+a-S - |B; |

RF turned OFF

i=i+l
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INFN High-Q/High-G R&D activities
INFN LASA is involved in several R&D international projects:

EP-1 (>100um)  EP-1 (>100pm) ~ EP-1 (> 100 pm)

: : O
e ILC Technology Network (ITN) derived from ILC IDT (ILC International Heat t,?atmem Heattgtmm EpE
Development Team) to support pre-lab technological (>830, o (>8f°0f' 2 ‘”%f’ o
priorities as identified by the International Expert Panel EP-2 (10~20 um) 55;2()(5:;1 EP. | Ep-2 (1020 um)
* EAJADE Staff exchange network for accelerator R&D within elementary O g8 O
partlde phySICS . . . . As?eprr}?bly As:e':'r'?bly (g?)%itl;ggfg,e;l:)
* INFN-funded R&D activity in the framework of European Strategy for Particle £, 0 £
phyS|CS ( 12802|g’n§8h) (75?52'81 + As?ePrEny
120°C, 48h)
Foreseen activities(3 years): R VT e
* Surface treatments development for reaching High-Q/High-G +++1 ||| ] e ,
: gt ### TRARA - Mo,
perfomances (single-cells) TR i o

* Industrialization: from single to multicell cavity
* R&D on cavity ancillaries (tuner, magnetic shield, etc,)

R&D for High-Q/High-G cavities :
e 1-cells 1.3 GHz: surface and thermal treatments development & qualification
e E-XFEL (baseline), Mid-T, two-step baking
* Cold VT (qualification) at LASA and in other labs (results validation) :
* A new testing Cryostat for high-Q cavities is under development R S




New cryostat

Cryostat and ancillaries

* Dedicated «small» cryostat

e L=3000 mm, OD 610 mm, max. cold volume 250 |
e 1.3 GHz cavities (two single-cell/one 9-cell)

e Short cold test cycle

* % of the Lhe required (w.r.t large cryostat)

* Cryostat insert

e Cavity installation and removal optimized

* External magnetic shield

* Available and qualified

e Bottom part will be re-annealed
o= after machining (cryostat integration)
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Diagnostics — Thermal breakdown

Second Sound detectors for quench source detection:

* More than 20 OST (Oscillating Superleak Detectors) in house developed

can be installed inside cryostat

e 20 channels external amplifier provides 90V polarization to sensors and
27 dB gain to sensors signal with a 100 kHz bandwidth.

 Signals are acquired by NI CRio unit, triggered with a digital signal
generated from the drop of transmitted power

* Quench position can be calculated by choosing several algorithms of
trilateration. Final spatial resolution is limited to 5-10 mm.

i Transmitted
- T

NI CRIO

Digital trigger

_u



field [mG]

Diagnostics: Magnetic measurements

* 3 cryogenic fluxgates to map magnetic flux across transition

* AMR sensors cross-calibrated through Fluxgates
measurement (warm and cold). 3D configuration

* Helmholtz coils to calibrate AMR sensitivity

 Temperature sensors to monitor cavity thermal gradient
across transition

-2 12 AMR and FG vs HC current
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Diagnostics — Radiation

Cryogenic Photodiode detectors
* Allow to localize the FE origin and a direct evaluation of real radiation yield
* S6775 Pin diode (replacing Hamamatsu S1223-01 with magnetic packaging)

* Amplifier boards are placed nearby the diode so that pick-up noise from
cables is minimized. All the electronics is suitable in the cryogenic context
(CMOS based op-amps, metal film capacitors,...).

* Sensors signals are extracted from cryostat and collected by a NI DAQ unit.
Now a maximum of 28 sensors can be installed in the cavity frame.

External radiation detectors on top cryostat cover only, close to cavity axis
* Gas-filled (Xe) proportional counter (Thermo Electron FH 40-G) for dose
measurement:
* Measurement range from 100 nSv/h to 1 Sv/h
* Continuous acquisition every 1 sec.
* Energy range from 45 keV to 1 MeV—> poor sensitivity for higher energies

* Nal(TIl) scintillator (Ortec 905-3) for measuring X-ray spectrum
* Maximum count rate 10° counts/sec
* Energy range from few keV to 10 MeV

* Due to its high sensitivity to radiation, for high doses detector saturates
producing counts pile-up: screening with high Z material is needed!



Cavity test: B61-EZ-002 (mid-T bake recipe)

Slow cooldown (1K/min) across critical
temperature (9.2K)

5 mG of residual field at cavity equator
assuming 0.3 nQQ/mG for baked niobium
@650 MHz: R;=2.4 n(2

1° test: some MP with radiation, then
sudden rise of radiation at 20.8 MV/m and
Q degradation

Test repeated from low fields

2° test: same behavior as the 1° test up
until 14 MV/m....

...then, sudden rise of radiation and drop of
Qo

Cavity quench at 23 MV/m with FE
Irreversible activation of a field emitter!
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B61-EZ-002 real-time scintillator X-ray spectrum

log(counts)

Energy [MeV]

Endpoint [MeV]

(vl fath g ) S

time [s]

counts/sec
= 8] w

time [s]
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204 field=3 MV/m

time [s]

e Continous acquisition of
X-ray spectrum during
power rise

* Electron impact energy as

function of E__. obtained

by energy end-point
extrapolation
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B61-EZ-002 Field emission model

The emitter is modeled by its position on cavity, emitter area S and

field enhancement factor B

The Power adsorbed by FE-electrons with impact energy Ey ;: Ppp =

LZl-Eki (sum all over RF-cycle).....
TRF ’

: : 1 1, ®/oPFE =
...causes a drop in the measured Q according to: =—+ > S
Qo’ Qo (Egcch)
1 N
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Be; is evaluated by Fowler-Nordheim fit

FE-electron pattern is generated for every E_ . value, with a Fishpact-based
code, by probing different emission sites

Simulated e” impact energies are matched with X-ray spectrum measured by
scintillator

Overall power Prg is evaluated for the best match, and the Q-curve calculated
The resulting site is nearby iris 2, with Bz = 300and S = 1 X 10~ 1°m 2



B61-EZ7-002 quench diagnostics

Second sound:

Quench position located in Cell 1
pi-mode: quench at 23 MV/m ~ QuenchPosition All Sensors [x.y.2] QuenchPosition [r,theta 2] equator at angle 194°

JO_ 19519 |-4866 |-31293 00 H201.162 1-16600: |-31893 | No significant features can be noticed
5 C by visual inspection
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Quench induced by FE?
L. . _3x107*Z(y-1)
Radiation Yield Y(E) = T ax10- 20— 1)

Possible FE site forE. = 1 MeVY = 1%
e
99% of power (50W) goes into heat
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temperature [K]

T-sensors during cooldown

——X160143 —X163862 —X160140 —X160146

—X162243 —X160147 —X160145

D ucx
()

alydog T

a1y wonog T |82

Z 21e3xn|4

o ==

e

0 1000 2000 3000 4000 5000 6000 7000 8000
time [seconds]

9000

X r' S "618 w
aly doj € 120

|

a1y wonog § ||20
aiy doy s



temperature [K]
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T-sensors and Fluxgate reading across T
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conclusions

* PIP-1l project initiated the season for high-Q/high-G measurements @
INFN-LASA lab.

* The Cryostat test facility is being updated with improved cooldown
rates and diagnostics.

* Extensive experience has been gained from tests on the PIP-II cavity
prototype.

* INFN-LASA is ready to tackle the challenges of future high-Q/high-G
projects and collaborations.



