

EUROPEAN SPALLATION SOURCE

Status of ESS cryomodule test in preparation for beam commissioning

C. Maiano, N.Elias, P. Pierini, P. Goudket, M. Wang, H. Przybilski, M. Skiba, A. Svensson, M. Jensen, S. Ekström, A. K. Bhattacharyya A. Gevorgyan, Y. Rutambhara, Y. Madza, M.Nabywaniec, European Spallation Source, Lund, Sweden F. Skalka, M. Wartak, P. Halczynski, P. Rutowki, IFJ PAN, Kraków, Poland

PRESENTED BY CECILIA MAIANO

- 1. Overview on ESS
 - Accelerator, cryomodules, installation progress
- 2. Cryomodules:
 - Test workflow, performances and statistics
- 3. Operational challenges
- 4. Recent achievements

Overview on ESS:

Accelerator, cryomodules, installation progress

ESS: European Spallation Source, Lund, Sweden

World's most powerful neutron source

Enabling materials research: to advance energy, health and environment technologies

Proton Accelerator

- 2.86ms pulse length
- 14Hz repetition rate
- 62.5mA current

Target Station

- 2.5m Tungsten wheel (36 radial segments)
- Cooled by helium
- Neutron moderator cooled by hydrogen

Scientific Instruments

- 5; 15; 22 scientific experiments
- Diffractometers;
 Spectrometers,
 Reflectometers; etc..

The linear accelerator @ 5 MW Overview

Parameter	Value
Ave power (design) [MW]	5
Max energy (design) [GeV]	2
Peak current [mA]	62.5
Pulse length [ms]	2.86
Rep rate [Hz]	14
Duty factor [%]	4
RF freq [MHz]	352.21/704.42

	Length	No. Magnet	$\#Cav \times \beta_{g/(Opt)}$	No. Sections	Power (kW)	IK partner
LEBT (from Plasma)	2.7	2 Solenoids		1		INFN-LNS
RFQ	4.5		L	1	1600	CEA Saclay
MEBT	4.0	II Quads	3	I.	15	ESS-Bilbao
DTL	38.9		5	5	2200	INFN-LNL
LEDP + Spoke	55.9	26 Quads	26 × (0.50)	13	330	IPNO
Medium Beta	76.7	18 Quads	36 × 0.67	9	870	LASA / CEA
High Beta (~1.3 GeV)	93.7	22 Quads	44×0.86	11	1100	STFC / CEA
High Beta II	85.2	20 Quads	40 × 0.86	10	1100	STFC / CEA
Contingency + HEDP	132.3	32 Quads	_	15		Elettra
DogLeg	64.4	12 Quads + 2	_	I.		Elettra
A2T	44.7	6 Quads + 8 Raster		1		Aarhus Uni
	603.0					

ESS SCL Cavities and Cryomodules

36

20 for 2 MW = 82 44 for 3 MW = 106 84 for 5 MW = 146

26

Cryomodules:

test workflow, performances and statistics

ELL CM: ESS Test Stand overview & workflow

MSE ESSIN-

CSS Internet Manager

Field

CM36 FIELD EMISSION REPORT

Emission

Document Type Analysis Report Document Number 055-512006 Date Oct 23, 2023 Renision 1 State Released Confidentiality Level Internal Page

The workflow and test is split in phases

with 2 result

Figure 3 Field emission energy spectra detected with Rad1 and Rad2, in closed loop

CM lifecycle is intensively documented

CM Procedures

Step 1 Reception

➢ Step 2 Incoming
 ➢ Step 3 ToBunker
 ☞ Step 4 WarmOps
 ☞ Step 5 ColdOps
 ☞ Step 6 Warmup

🛨 🗁 Step 7 Disconnect

+ 🗁 Step 8 Outgoing

🛨 🗁 Step 9 Dispatch

Mechanical

- Cryomodule Assembly from (INFN/STFC) CEA
- Cryomodule testing phase (Mec/Vac/Cryo/SRF)

SRF

CAV3-M003

Table 1. Phases of the CM Workflow

# Phase		Areas						
		From		То				
1	Cryomodule reception	G02-CXL		CM-IRA				
2	Cryomodule preparation	CM-IRA						
3	Cryomodule installation	CM-IRA Bunker						
4	Cryomodule Warm Validation							
5	Cryomodule Cold Validation	TS2 Bunker						
6	Cryomodule Warm-up							
7	Cryomodule Disconnection	Bunker CM-IRA						
8	Cryomodule Preparation for Dispatch CM-IRA G02-CXL							
9	Cryomodule Dispatch	G02-CXL HLB Hall or Storage						

Site Acceptance Test of CM

Vacuum Electrical

TS2 Statistics – 15 CM tested

ELL: Number of days in TS2 bunker

Trend improving over time, outliers:

CM03:

Repair of gauge (2x test)

CM32:

Cryoplant trip/ cold leak investigations

CM33:

Needed to add pumping during conditioning due to severe vacuum activity

Steady State: 6 weeks in bunker (42 calendar days max)

RF Performances: Gradient

ELL: VT/CM Gradient Performances

Nominal gradient is generally met

Few marginal cav

Test uncertainties large at the start of TS2 commissioning, **improving with time**

.cws 2024-07-10

Sanity Check: VT vs CM checks

ELL: VT/CM Gradient Correlation

As expected VT/CM results typically agree within 10-15%

The part at higher gradients suffers from the onset of the Admin limit (max coupler power in SW) in CM testing

LCWS 2024-07-1(Vertical Gradient

Coupler conditioning sequence Warm and cold coupler conditioning

Automated sequencer script runs through the steps, and monitors vacuum, EPU and AD signals.

Admin limits in full reflection mode:

- Power cannot exceed **300/400 kW** for RF pulses (for medium and high beta couplers respectively) longer than **500 μs**.
- Peak power cannot exceed 1.1/1.2 MW for any pulse length

ELL: Conditioning Times

Conditioning times correlate with number of NCR registered during assembly

CM33 was extremely long, but we profited from the involvement of ESS OPS to run 24/7 conditioning through our automated scripts

SRF experts may speed up the process, but the procedure is able proceed with no supervision.

Coupler Conditioning (off resonance)

Keeping track of experience, as it will be repeated in tunnel

Cryogenic operation: full Cooldown Cycle

~20 d cold

Credits, N. Elias, ESS

Tuning tool Far and Fine tuning tools

Fine tuning with power increase and phase flattening

ess

Calibration tool

Convert from power sent from Klystron to E_{acc} (or V...)

Using cavity parameters and calibration factors

PU antenna recalibrated using forward power, as VT calibration factors lead frequenctly to overestimation of cavity field

By using different methods and **power readings (redundant power monitoring**) we estimate uncertainty of gradient calibration

Cavity Conditioning/Operation tool (TS2)

Getting PV from several subsystems, still manual process

Cavity 1 Conditioning × Cavity 2 Conditioning × Cavity 3 Conditioning × Cavity 4 Conditioning × SCL - Coupler & Cavity 0 perations × **Cavity 1 Conditioning - MB** Tue, 04 Jun 2024 17:04:13 Piezo Main Window Cavity Field - AIO Cavity Phase - Al0 **Op. Mode & LLRF** Radiation EMR-XRS-001: Reset add Dot 🛛 🔻 ERROR tatus: Acquire **Field Emission** Op. mode: Norma 432.00 unts: Main digitiser: EMR-XRS-002: Open loop 0.0 0.2 0.4 0.6 0.8 1.0 1.0 2.0 3.0 4.0 0.0 Piezo LLRF state: ON Time [ms] Time [ms] add Dot 💦 💌 Klv/Fwr/Refl Phase - AI3/AI5/AI6 at low field, Kly/Fwr/Refl Power - AI3/AI5/AI6 Open loop: status: Acquire Eacc [MV/m] EMR-XRS-001: [c/s] EMR-XRS-002: [c/s] unts: 72.00 Loop state: Bias then Closed ezo Controller Status HV Bias Channel A Channel R loop to cope High Voltage: 0.000 V -0.001 Alarm: No error Mode: Alarm: No error Current Read: 1.772E-7 **RF** pulse 90.00 V with LFD Amplitude readback Amplitude readback: 10.00 V HV Activation: gger Delay readback: 3.000 Trigger Delay readback: 3.000 HV Status: 🔘 Reset control, Set-point Feed-forward **Conditioning Parameters** Detuning & QL calibrations, 🔺 🕂 😢 🔍 🔍 🐌 🔖 Fixed SP: Fixed FF: Cavity kt: 11.070 <u>A</u> length 0.855 m Enable: 🚺 374 Cold att: 1.495 Enable: R/O: cavity 7.720E5 Cavity Field: 2.00 MV/m Power level P: 435.00 kW Oext: Vacuum: 5.60E-9 mBar Sten: 1 MV/m 370.19 kW Step: 1 kw Kly, Pwi parameters and illing time: 0.300 ms Fill ratio: 1.00 ulse width 200.00 us readback: 200.00 us Cavity IOC, Tao: 0.321 ms Filling time: 0.300 ms Duty cycle 14.00 Hz readback: 14.00 Hz diagnostic Delay: 0.000 ms 0.054 0.428 0.50 0.60 0.70 0.80 0.90 1.00 Rise time: 0.000 ms Arc Air EPU: signals providing Time [ms] 1.296 PT0-004: 30.59 mbar Phase [deg]: 0.00 Phase [deg]: 0.00 c Vacuum: in-pulse detuning

calculation

LLRF

Operational challenges

Equipment description for field emission

Nal(tl) detectors with Pb shielding (AMPTEK Gammarad5 76x76mm)

https://www.amptek.com/-/media/ametekamptek/documents/resources/products/user-manuals/gammarad5-usermanual-b0.pdf?la=en&revision=afb7309f-7ab0-4490-8e10-db886b022bfc

Acquisition and Analysis tool

g 103

10¹

0

a from: 2023-11-17T09:29:02.146857

2000

4000

6000

8000

Energy Key bz-xRS-Data.hdf5

10000

12000 14000

- Nal(TI) integrated in EPICS
- Tools with python scripts

Use Energy Calibration V LogPlot V Background peaks Activation Peaks

Input Polarity:0 Instant Dead Time:1.45519152275 Intercept:62.381877022653725

FEManager.

ive Time: 61571.477 ow channel:0 CA channels:8192

Slow peaking time:10.0 Slow threshold:0.0

ICA source:0 UR enable:0

A=[1.75],B=[-42.70], E=A#+B

giant resonance (y,n)

activation

FE as limiting mechanism

FE as limiting mechanism fed by coupler MP: HV suppression Cm37 cav1 PL 300 us

255

Measurement results collection

Detector technical documentation/calibration and configuration files stored in ESS intranet

Data collection (dose rate, max FE energy, direction of emission) stored in ESS management system:

СМ		Accel gra	eratir dient	g	Dose Rate (uSv/h) Nal count rate (cps) Radiation direction			Nal endpoint energy (MeV)								
Medium Beta	C1	C2	C3	C4	C1	C2	C3	C4	C1	C2	C3	C4	C1	C2	C3	C4
CM04 Configuration B	20	19	15	18	y 30	Y 1200	Y 1900	Y 1800	AC	bck	AL-D	AL-D	Rad1: 4 Rad2: 4	Rad1 <3 Rad2 <3	NA	Rad1: 3 Rad2: 6
High Beta																
CM37 Configuration C	20	21	19	22	OL y 250 n <50 CL y 30 n <10	OL y 500 n <200 CL Y 250 n <25	OL Y 1000 n <100 CL Y 800 n <50	OL y 600 n <50 CL Y 100 n <10	AL-U	AL-U	Both AL-U AC	AL-U	Rad1 >>8 Rad2 <8	Rad1 >8 Rad2 <8	Rad1 >8 Rad2: 8	Rad1 >8 Rad2: 8

Recent achievements

Start and completion of SPK060 Warm Coupler 1 and 2 Conditioning

Sequence Table Spoke ×

100 % 🔻 🕈 🕶 🔻

Sequence Table Configuration

Sequence Table	Configuration			
Steps	RF Width [ms]	Rate [Hz]	Pmin [kw]	Pmax [kw]
SW-S01	0.15000000596	14.0	10.0	350.0
SW-S02	0.15000000596	14.0	10.0	350.0
SW-S03	0.15000000596	14.0	10.0	350.0
SW-S04	0.25	14.0	10.0	350.0
SW-S05	0.5	14.0	10.0	350.0
SW-L01	1.0	14.0	10.0	350.0
SW-L02	2.0	14.0	10.0	350.0
SW-L03	3.0	14.0	10.0	350.0

SPK-060 WCC - AD OPEN FORUI

SPK-060 coupler wcc 1

Our First spoke operation at ESS SCL tunnel

SPK-060 WCC - AD OPEN FORUM

Linac Configuration

ess

ESS Cavity DB used to generate linac configuration, to match performance with gradient requirements of the nominal design

2024-06-11 17:35:35.958142

ESS Cavity Production

ConditioningSummary.py

Thanks

Acknowledgments

* ESS: TS2 SRF, IFJ, RP, CRYO, VAC, OPS teams

* CEA/INFN/STFC in-kinds

