A sustainable strategy for the Cool Copper Collider

Martin Breidenbach¹, <u>Brendon Bullard</u>¹, Emilio Nanni¹, Dimitris Ntounis^{1,2}, Caterina Vernieri^{1,2} 1) SLAC National Accelerator Laboratory, 2) Stanford University

International Workshop on Future Linear Colliders Industry and Sustainability Session (LCWS2024) July 9, 2024

NATIONAL ACCELERATOR LABORATORY

A compact accelerator

- + The Cool Copper Collider (C³) is a linear e⁺e⁻ collider concept with a compact 7-8 km footprint
- - Small iris between cavities minimizes coupling, fundamental RF does not propagate along the beam line
 - Solution: power distributed to each cavity from a common RF manifold
 - C³ structures are machined in halves using modern CNC milling from slabs of copper
- Operation at 77 K with LN₂ reduces breakdown rate by 2 orders of magnitude w.r.t. room temp

+ Cavity geometry is optimized to minimize surface fields \rightarrow low breakdown rates at high gradients

Comparison of Parameters -

Collider	NLC	CLIC	ILC	C^3	C^3	
CM Energy [GeV]	500	380	250(500)	250	550	
Luminosity $[x10^{34}]$	0.6	1.5	1.35	1.3	2.4	
Gradient [MeV/m]	37	72	31.5	70	120	
Effective Gradient [MeV/m]	29	57	21	63	108	
Length [km]	23.8	11.4	20.5(31)	8	8	
Num. Bunches per Train	90	352	1312	133	75	
Train Rep. Rate [Hz]	180	50	5	120	120	
Bunch Spacing [ns]	1.4	0.5	369	5.26	3.5	
Bunch Charge [nC]	1.36	0.83	3.2	1	1	
Crossing Angle [rad]	0.020	0.0165	0.014	0.014	0.014	
Site Power [MW]	121	168	125	$\sim \! 150$	$\sim \! 175$	
Design Maturity	CDR	CDR	TDR	pre-CDR	pre-CDR	

Facility length and site power requirements indicate relative carbon impact

What can we do with C³?

can operate in the 250 GeV ZH mode

Physics reach comparison

- + Consider absolute carbon impact and impact relative to physics output (luminosity, \sqrt{s} , & polarization)
 - C³/ILC-250 performs similarly to CLIC-380
 - C³/ILC-550 outperforms CLIC-380
 - C³/ILC-550 matches or exceeds physics reach of FCC in all coupling sensitivity metrics

Expected precision for Higgs coupling strengths obtained from Snowmass Higgs Topical Group

Compute a **weighted average** of the relative precision of all Higgs coupling measurements

 \rightarrow highly weights most improved and most precise measurements, emphasizes individual colliders' strengths!

		HL-LHC +										
sion $(\%)$	HL-LHC	CLIC-380	$ILC-250/C^{3}-250$	$ILC-500/C^{\circ}-550$	FCC 240/360	CEPC-2						
	1.5	0.34	0.22	0.17	0.17	0.0						
	1.7	0.62	0.98	0.20	0.41	0.4						
	3.7	0.98	1.06	0.50	0.64	0.4						
	3.4	1.26	1.03	0.58	0.66	0.4						
	2.5	1.36	1.32	0.82	0.89	0.						
	-	3.95	1.95	1.22	1.3	1.						
	1.8	1.37	1.36	1.22	1.3	1.						
	9.8	10.26	10.2	10.2	10	4.1						
	4.3	4.36	4.14	3.9	3.9	3.						
	3.4	3.14	3.12	2.82/1.41	3.1	3.						
	0.5	0.50	0.49	0.20	0.33	-						
	5.3	1.44	1.8	0.63	1.1	1.						

$$\left\langle \frac{\lambda}{2} \right\rangle = \frac{\sum_{i} w_{i} \left(\frac{\delta\kappa}{\kappa}\right)_{i}}{\sum_{i} w_{i}} \quad \text{with} \quad w = \frac{\left(\frac{\delta\kappa}{\kappa}\right)_{\text{HL-LHC}} - \left(\frac{\delta\kappa}{\kappa}\right)_{\text{HL-LHC}}}{\left(\frac{\delta\kappa}{\kappa}\right)_{\text{HL-LHC}+\text{HF}}}$$

Lifecycle assessments

PRX Energy 2, 047001

Lifecycle assessment has been evaluated for ILC and CLIC linear accelerator concepts \rightarrow extended to include estimates for energy production emissions and other facilities

Collider project inputs

- ARUP analysis indicates 80% of construction emissions arise from materials (A1-A3), remaining from material transport and construction process
 - GWP for CEPC/FCC tunnels ~6tn/m
 - Use 0.18 kg CO₂e/kg concrete from CEM1 C40 Portland cement and volume of concrete required to build C³

Project	Main tunnel length (km)	GWP (kton CO ₂ e)							
		Main tunnel	+ Other	+ A4-A5					
FCC	90.6	578	751	939					
CEPC	100	638	829	1040					
ILC	13.3	97.6	227	270					
CLIC	11.5	73.4	98	125					
C ³	8.0	133	3	146					

C³ power requirements

CM Energy [GeV]	250	550
Luminosity [×10 ³⁴ /cm ² s]	1.3	2.4
Gradient [MeV/m]	70	120
Effective Gradient [MeV/m]	63	108
Length [km]	8	8
Num. Bunches per Train	133	75
Train Rep. Rate [Hz]	120	120
Bunch Spacing [ns]	5.26	3.5
Bunch Charge [nC]	1	1
Crossing Angle [rad]	0.014	0.014
Site Power [MW]	~ 150	~ 175

Possible options for beam power reduction with several different approaches

Note: Impact on luminosity and ultimate physics performance **not yet evaluated**!

PRX Energy 2, 047001

Overall site power (50 MW, 30%)

Scenario	RF System	Cryogenics	Total	Rec
	(MW)	(MW)	(MW)	(]
Baseline 250 GeV	40	60	100	
RF Source Efficiency Increased 15%	31	60	91	
RF Pulse Compression	28	42	70	
Double Flat Top	30	45	75	
Halve Bunch Spacing	34	45	79	
All Scenarios Combined	13	24	37	

Dptimizations

- Input Power - Reflected Power - Beam Off

A sustainable strategy for the Cool Copper Collider

PRX Energy 2, 047001

Carbon intensity projections

(Note: Silicon Valley Clean Energy can provide 175 MW of clean energy in 2-3 year timeframe)

A sustainable strategy for the Cool Copper Collider

\rightarrow both estimations using projections from US and international agencies give comparable projections

Operations emissions

Solar and wind are established technologies, the question is how to store it?

we can leverage the grid to smooth energy load curve

With access to renewables (e.g. dedicated solar/wind farms), \rightarrow any facility can have access to 20 gCO₂e/kWh energy with their own solution (e.g. Green ILC)

A sustainable strategy for the Cool Copper Collider

By 2040, 8 hours of energy use for C³ at 150 MW is < 1% of grid capacity

Dedicated energy production

YDRO POWE

 \rightarrow Evaluated a mix of energy solutions, C³ could produce its own power with renewables for ~\$150m

Lifetime power consumption

Step 1: calculate the total energy consumed per year

$$E_{\text{annual}} = P \left[\kappa_{\text{down}} \cdot T_{\text{year}} + (1 - \kappa_{\text{down}}) (T_{\text{collisions}} + T_{\text{development}}) \right]$$
Power during collision mode
$$Fraction \text{ of power used} \qquad \text{Time in collision mode} + 179$$
out of collision mode
$$for \text{ detector developement}$$

$$(Taken to be 30\%) \qquad (i.e. 1 \text{ for every 6 weeks in collision}$$

Higgs factory	CLIC $[45]$	ILC	[12]	C^3	[11]	CE		50],[6	61]			$\overline{\text{FCC} \left[20\right]}$,[62]	, [63]
$\sqrt{s} [\text{GeV}]$	380	250	500	250	550	91.2	160	240	360	88,9	1,94	$157,\!163$	240	340-350
P [MW]	110	111	173	150(87)	175 (96)	283	300	340	430	22	22	247	273	357
$T_{\rm collisions} \ [10^7 \ {\rm s/year}]$	1.20	1.6	60	1.	60		1.3	0				1.	08	
$T_{\rm run}$ [years]	8	11	9	10	10	2	1	10	5	2	2	2	3	1
$\mathcal{L}_{\rm inst}/{\rm IP} \left[\cdot 10^{34} \ {\rm cm}^{-2} \ {\rm s}^{-1} \right]$	2.3	1.35	1.8	1.3	2.4	191.7	26.6	8.3	0.83	115	230	28	8.5	0.95
$\mathcal{L}_{\mathrm{int}} \; [\mathrm{ab}^{-1} \;]$	1.5	2	4	2	4	100	6	20	1	50	100	10	5	0.2

Parameters for all machines taken from latest technical reports

PRX Energy 2, 047001

Step 2: sum up all the years in each running mode

$$E_{\text{total}} = \sum_{r \in \text{runs}} E(r)_{\text{annual}} \cdot T_{\text{run}}$$

lision mode + 17%

or developement

ry 6 weeks in collisions)

- Results -

Energy consumption

Total energy consumption over full run time

C³ and CEPC consumption driven by long run times

Total energy consumption weighted by average coupling precision

Linear accelerators benefit from higher precision

15

Emissions from operations and construction

Emissions from operations

Same relative performance as for total energy used (since common GWP is used for all facility operations)

A sustainable strategy for the Cool Copper Collider

PRX Energy 2, 047001

Emissions from construction

Major differentiation in impact from linear and circular colliders driven by overall length/circumference

Total carbon footprint

Absolute total emissions

Impact of embodied carbon in construction materials is the driving factor of GWP

A sustainable strategy for the Cool Copper Collider

Total emissions x average coupling precision

Considering also the physics reach, linear colliders are clearly superior with optimized C³ on top!

17

Conclusions

- + Lower energy consumption over circular colliders to achieve same (or better) physics goals • C³ physics reach enhanced by polarized electrons, ability to access $\sqrt{s} = 550$ GeV running mode
- + Significantly reduced emissions associated to construction than alternative Higgs factory concepts • Emissions from conventional concrete manufacturing, ~8x less embodied carbon for C³ than FCC
- + Can be built anywhere, US siting attractive due to diverse portfolio of sustainable energy sources
- Ongoing work:
 - Detailed luminosity studies have been performed in the nominal beam configuration, extension to powersaving scenarios envisioned (see talk by Dimitris tomorrow)
 - Power optimization scenarios (halved bunch spacing, double flat top) are being demonstrated and will become the new baseline beam configuration (see during Friday's C³ satellite meeting)

+ C^3 is a compelling candidate for a compact linear e^+e^- Higgs factory with low carbon impact

Find publications, photos, and more @ web.slac.stanford.edu/c3

Thank you for your attention!

Backup -

A sustainable path for HEP

- + Climate change poses major threat to humans and Earth's ecosystems
- + Cumulative emissions must stay below 800 Gt CO₂ eq. to stay below 2° C global warming
- + HEP facilities are **big** CERN consumes 1.3 TWh / year (same as all of Geneva), 27 km long tunnel • How can we continue to deliver major scientific discoveries while protecting the environment?

Sustainability and the future of high energy physics

21

Siting options for C³

Tunnel construction for FCC-ee

+ <u>Snowmass climate impacts report</u> analyzes FCC construction using bottom-up and top-down approaches • Only takes into account main tunnel (excludes access shafts, experimental halls, etc.)

Bottom-up approach

Driven by manufacture of concrete

Top-down approach Includes secondary emissions (e.g. construction machinery)

FCC inner/outer diameter 5.5/6.5m Concrete is 15% cement, which releases 1 ton CO₂ per ton

237 kton CO₂ (for 7 mil m³ spoil, concrete density 1.72 ton/m³)

meter of tunnel length

With 5k kg CO₂/m, yields **500 kton CO₂**

Roughly factor of 2 difference between base material emissions and secondaries

Rough estimates of 5-10k kg CO₂ per

More recent update on FCC civil engineering (L. Broomiley)

C³ Excavation models

Bored tunnel

Total of 600k m³ total excavation, 225k m³ concrete

- ► 200k m³ of excavation comes from tunnel volume, concretes include all site requirements
- Emissions estimated using Snowmass report parameters

Cut and cover

Preferred option for reduced construction costs and emissions (but not required)

 Much of the displaced earth is pushed on top (shielding), only ~40k m³ must be transported away

Collider project inputs

Linear Collider Options

S. Evans

1. CLIC Drive Beam

5.6m internal dia. Geneva. (380GeV, 1.5TeV, 3TeV)

(380GeV)

Reference: CLIC Drive Beam tunnel cross section, 2018

Reference: CLIC Klystron tunnel cross section, 2018

ARUP

Arched 9.5m span. Japan. (250GeV)

3. ILC

Reference: Tohoku ILC Civil Engineering Plan, 2020

