

Hydrodynamic Simulations of an Argon-filled Tapered Plasma Lens for Optical Matching at the ILC e⁺ Source

M. Formela¹, M. Mewes², G. Boyle³, G. Moortgat-Pick¹, N. Hamann¹, G. Loisch² M. Thévenet², J. Osterhoff⁴

¹University of Hamburg, Hamburg, Germany ²Deutsches Elektronen Synchrotron DESY, Hamburg, Germany ³James Cook University ⁴Lawrence Berkeley National Laborator

LCWS2024

Need to collimate divergent e+

➔ Optical Matching Device

- •Principle of Plasma Lens:
- 1) Inlets fill capillary with gas (e.g. H2, Ar)
- 2) Voltage on electrodes ignites plasma
- 3) Electrons are accelerated (Electric current)
- 4) Current induces <u>azimuthal</u> magnetic field B_{ϕ}
- 5) Magnetic field focuses incoming charged particle beam

Optmization of PL Design

- **Particle Tracking Simulations**
- Goal: find optimized PL design
- •Conditions:
- 1) ILC e+ distribution
- 2) No Beam self-interaction
- 3) Idealised plasma lens:
- ➔ No Plasma dynamics
- Ideal magnetic field (from $j(x,y,z,t) = j_z(z)$)

Result: ~43% captured e+ with <u>Tapered</u> capillary profile!

Preliminary HD Results

Т

×10⁰

0.06

0.05

0.03

0.03

0.02

0.02

0.01

0.01

0.01

0.01

Radial Position p[m]

LCWS2024

Preliminary (M)HD Results

•Implementations needed:

1) Improve Momentum-Transfer Model 2) Angled Inlets

- 3) Realistic materials of components
- 4)Rotating target 5`

•To study:

1) Plasma response to multi-pulse discharges

→Demanding e+ beam time structure

	Repetition rate	Duration	Spacing
Pulse	5 Hz	727 μs 538 ps	199 ms
Dunch	1.0 MITZ	556 ps	554118

2) Gas flow into downstream accelerator

→ Discharges in cavity possible (no acceleration)

3) Heat load on geometries

Compare with prototype experiments by Niclas Hamann (next talk)

Thank you for listening!